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Abstract

Subsidies are common in development policy to encourage adoption of new technologies.
Evidence suggests subsidies may either increase or decrease longer-run adoption. I study
the dynamics of technology adoption in response to subsidies in an urban sanitation
context. The technology, a matching platform for sanitation services in Dakar, Senegal,
was designed to connect households with service providers. I exploit spatial variation in
exposure to short-term subsidies for septic pit desludgings through the platform. Using
a neighborhood-level panel constructed from platform administrative data, I show that
neighborhoods exposed to short-term subsidies continue using the platform at signifi-
cantly higher levels, but this effect declines over time. Following a subsequent city-wide
subsidy campaign, increased adoption re-emerges in previously-subsidized neighborhoods.
I find evidence suggesting within-neighborhood spillovers are a mechanism for increased
long-run adoption: new users make up a substantial fraction of the increased adoption
over time in previously-subsidized neighborhoods.
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1 Introduction

Subsidizing the adoption of new or under-utilized technologies is a common strategy in
development policy. These subsidies are often implemented by donors for a fixed period
of time, with the intention to spark demand that persists after subsidies end. In some
cases, such as for anti-malarial bed nets, improved cook-stoves, fertilizer, or solar lamps, a
short-run subsidy may be sufficient to increase longer-run adoption (Dupas, 2014b; Bensch
and Peters, 2020; Carter et al., 2021; Meriggi et al., 2021). In other cases, such as for
preventative health products, subsidized distribution may lower future adoption (Fischer
et al., 2019). Understanding how subsidies affect longer-run use of a particular technology is
key to designing efficient policy and using limited resources effectively.

I study the impact of short run subsidies on consumer adoption of a technology designed
to facilitate access to mechanized desludging in Dakar, Senegal. Improving management of
fecal waste by increasing the use of mechanized desludging is a key public health challenge in
many dense cities like Dakar (Kresch et al., 2020). To address this challenge, the Senegalese
government launched a call center and matching platform in 2013 designed to connect
households with providers of mechanized desludging services using auctions. Matching
platforms, such as ride-sharing software or auction websites, have the potential to transform
markets by reducing consumer search costs and matching users to lower-cost service providers
(Gehrig, 1993; Bakos, 1997; Brown and Goolsbee, 2002; Cramer and Krueger, 2016; Farronato
and Fradkin, 2018; Salz, 2020). The market for sanitation services in Dakar has traditionally
been characterized by high search costs for consumers and spatially dispersed service providers
who may collude to keep prices high. The government’s stated goal for the platform was
to make it easier and cheaper for households to choose a mechanized desludging over a
less-sanitary manual option.

To explore the impact of subsidies on longer run adoption of the sanitation matching
platform, I rely on data from two distinct but similar subsidy programs which induced
households to use the platform to source a mechanized desludging. I exploit variation
in neighborhood-level exposure to experimental subsidies offered to randomly selected
households. In 2014, Lipscomb and Schechter (2018) provided randomly-selected households
in about 400 neighborhoods subsidies for which they were required to use the platform.
These subsidies allowed households to purchase a mechanized desludging of their septic
pit for a fixed price of about $31 USD, roughly 66% of the average market price. For
households without access to subsidies, and for treated households after the subsidies ended,
the platform provided each household a price by conducting an auction with sanitation
service providers. In some areas of the city, these prices were below prices for mechanized
desludging services available outside the platform, whereas in others the platform offered
prices comparable to the market (Deutschmann et al., 2021a).

I find that in the six months after subsidy availability ended, neighborhoods previously
treated with the subsidies were 86% more likely to have any households use the platform
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to request a mechanized desludging. At eighteen months post-experiment, treated neigh-
borhoods remained 64% more likely to have any households using the platform. Treated
neighborhoods had 146% more service requests than non-treated neighborhoods in the
first six months post-experiment, and 119% more service requests eighteen months post-
experiment. Beyond eighteen months post-experiment, increased adoption in treated areas
faded to be statistically indistinguishable from zero. Prices offered to households in treated
neighborhoods did not differ systematically from those offered in non-treated neighborhoods
during this period, suggesting prices were not driving increased long-run adoption. Instead,
past exposure to short-run subsidies may have introduced households to the convenience of
the platform, reducing search costs and providing a useful outside option when bargaining
for mechanized desludging services outside the platform. The decline in treatment effects
over time suggests that gains in adoption may not persist indefinitely absent additional
intervention or advertising.

Next, I explore how past exposure to subsidized prices offered via the platform affects
future take-up of the platform when similar subsidies become available. In 2017, two years
after the subsidies offered in Lipscomb and Schechter (2018) ended, the government ran a
major city-wide campaign in Dakar intended to increase adoption of improved sanitation
services. The campaign offered households anywhere in the city mechanized desludgings
for a fixed, subsidized price of about $30 USD, nearly the same price previously offered
during the experiment. To access these subsidies, households were required to call in and
use the matching platform. I show that neighborhoods previously offered the experimental
subsidies were 32% more likely to have any households take advantage of the new round of
subsidies. At the intensive margin, treated neighborhoods made 71% more service requests
than non-treated neighborhoods. Furthermore, this increase in platform use similarly
persists in treated neighborhoods at higher levels than non-treated neighborhoods after the
conclusion of the city-wide subsidy campaign. It may be that households in treated areas
formed reference points for prices and recognized that the subsidized price was a good deal
(Kőszegi and Rabin, 2006), or households may have learned about the benefits of mechanized
desludging itself and increased their demand at any price. It could also be that the city-wide
advertising campaign reminded households of the availability of the service and they were
more comfortable using it given past experience.

What explains this persistent platform adoption in previously-subsidized areas? I find
suggestive evidence that within-neighborhood spillovers are a mechanism driving longer-run
platform adoption. I demonstrate that the persistent increase in platform use in previously-
treated neighborhoods is driven by both new and repeat users of the platform. If the effects
were driven only by repeat customers, we might conclude that short-run subsidies are only
successful at shifting long-run demand among direct recipients. If instead there are persistent
increases in new users in previously-treated neighborhood, this suggests that knowledge and
adoption of the platform may spill over within the community, and that subsidies may shift
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community-level demand for the platform beyond direct recipients. I show that in the six
months after the Lipscomb and Schechter (2018) subsidies ended, about half of the increased
demand in previously-treated areas was from new platform users. This fraction declines over
time, but at eighteen months post-subsidy, about one quarter of the increased demand is
still being driven by new platform users.

To further support spillovers as a mechanism, I show evidence of heterogeneity across
space in the persistence of platform adoption. This is consistent with work in the literature
studying sanitation decisions more generally, with existing evidence suggesting that the
health effects of adopting improved sanitation are a function of both a household’s decision
and the aggregate decisions in the nearby community (Andrés et al., 2017; Kresch et al.,
2020). The decision to adopt improved sanitation may exhibit increasing returns to scale, in
that it becomes more valuable for a household to adopt the more sanitary option if more of
its neighbors have done so (Deutschmann et al., 2021b). Past research has demonstrated the
potential for decision spillovers to increase community-level adoption of improved sanitation
(Guiteras et al., 2015, 2019; Kresch et al., 2020). I show that use of the platform declines faster
at the periphery of treated neighborhoods compared to the center of these neighborhoods
which were more intensively treated. This may suggest that short-run decision spillovers in
a concentrated geographical area are insufficient to sustain long-run behavioral change when
prices are relatively high and neighboring areas do not adopt at the same levels.

I contribute to a long literature on subsidies in health and sanitation. The question
of whether and how to subsidize these technologies, particularly in the presence of health
externalities and peer effects, has long been a question of both academic and policy interest
(Kremer and Miguel, 2007; Hoffmann et al., 2009; Banerjee et al., 2010; Cohen and Dupas,
2010; Oster and Thornton, 2012; Dupas, 2014a; Tarozzi et al., 2014; Cohen et al., 2015;
Baird et al., 2016). On the one hand, Dupas (2014b) highlights the potential for short-run
subsidies to increase long-run demand for experience goods.1 On the other hand, Fischer
et al. (2019) find lower demand for health products following free distribution. In keeping
with Dupas (2014b), I find evidence suggestive of long-run demand increases following past
experiences with subsidies. In this context, however, I find that demand fades with time
absent further intervention,2 and that long-run demand increases may be driven in part by
spillovers to neighbors of past subsidy recipients.

This paper additionally builds on work demonstrating the role of price reductions in
encouraging households to change sanitation behavior. High prices for mechanized desludging
are a common feature of urban areas, and households generally exhibit low willingness to pay
at market prices (Jenkins et al., 2015; Burt et al., 2019; Peletz et al., 2020). Lipscomb and

1Carter et al. (2021) similarly identify long-run changes in fertilizer adoption from short-run subsidies,
and further demonstrate that decision spillovers account for a large portion of subsidy-induced gains.

2This result is consistent with findings in the literature on habit formation. Caro-Burnett et al. (2021) find
subsidies induce short-term changes in adoption of improved toilets, but behavior changes decay over time
and become statistically indistinguishable from control-group participants. Hussam et al. (2021) similarly
find that financial incentives increase handwashing, but the effects decay over time.
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Schechter (2018) establish that subsidies are effective at increasing adoption of mechanized
desludging in the short term, and Johnson and Lipscomb (2021) further demonstrate the
potential for targeting subsidies through a matching platform to increase mechanized adoption
in a highly cost-effective way. Deutschmann et al. (2021b) find that behavioral channels
like social pressure and reciprocity do not seem to cause sanitation decision spillovers in
urban areas. Instead, households may tend to adopt improved sanitation as more of their
neighbors adopt and the returns to their own adoption increase. Desludging a pit is a
regular choice with visible consequences for households and neighborhoods. The platform
may facilitate overall increases in mechanized desludging by reducing matching frictions
between households and service providers. Understanding the potential for learning and past
experience to drive long term, persistent behavioral change in household sanitation choices
is key to designing optimal sanitation policy. I contribute to this literature by showing that
adoption of the matching platform is persistent in the longer run following a subsidized
period.

The rest of the paper is organized as follows. In Section 2, I describe the context of
the sanitation services market in Dakar, including the establishment of the intermediation
platform and the subsidy programs. In Section 3 I describe the empirical strategy, and
present results of that strategy in Section 4. Section 5 concludes.

2 Context and Data

In 2011, the National Sanitation Office of Senegal (ONAS) launched an ambitious urban
sanitation program supported by the Bill and Melinda Gates Foundation. The program
supported a wide range of activities intended to reform and modernize the sanitation
services sector in Dakar. In this paper, I explore the interaction of three key activities: the
establishment of a sanitation matching platform and call center, experimental subsidies
offered as part of a large-scale randomized trial (Lipscomb and Schechter, 2018), and a large
city-wide subsidy campaign conducted several years after the randomized trial ended.

One primary focus of the ONAS sanitation program was to increase household adoption
of mechanized desludging services. In 2013, at least 75% of households in Dakar used toilets
which are not connected to a sewage network, and instead empty into on-site septic pits
(Sene, 2017). These pits fill up and must typically be emptied, or desludged, 1-2 times per
year. Households face two main options to desludge their pits. They can use a mechanized
desludging provider, who pumps sludge from the pit into a vacuum truck and disposes of it
off-site, or they can perform a manual desludging. Manual desludgings may be done by a
family member or a baay pell who is paid for the service. In either case manual desludgings
typically result in fecal waste being dumped in the street in front of a house or a nearby
empty lot, with important health implications for children especially (Kresch et al., 2020;
Johnson and Lipscomb, 2021). The average cost to hire a truck for a desludging in 2013 was
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about $50 USD, and the average cost for a baay pell manual desludging was about $29 USD
(Deutschmann et al., 2021b).

The platform I discuss in this paper was designed to match households to sanitation
service providers using an auction system and call center. This platform was primarily
run as a public service by ONAS with support from Water and Sanitation for Africa
and Innovations for Poverty Action. The stated purpose of the platform was to increase
competition among mechanized desludging providers, reduce search costs for households, and
facilitate regulation of the sector. The majority of trucks active in the sector were registered
in the platform, although a minority chose to participate on a regular basis. The platform
conducted just-in-time auctions with sanitation service providers whenever a client called to
request service, and during normal (non-subsidized) operations the resulting auction ending
price was offered to that client as the price available through the platform. The mechanized
desludging services offered through the platform did not differ in any substantive way from
those available elsewhere in the market. In companion work, Deutschmann et al. (2021a)
find that the platform effectively offered lower prices than the wider market in some areas of
the city, whereas in others it was offering prices similar to market prices available elsewhere.
Even in areas where prices offered through the platform were not lower than elsewhere in
the market, households may have still faced lower search costs or improved bargaining power
if they sourced desludgings from elsewhere.

Starting in 2013, researchers conducted a series of experiments in partnership with ONAS
to study household demand for mechanized desludging services (Lipscomb and Schechter,
2018). These experiments included offering households fixed, subsidized prices to encourage
adoption of mechanized desludging. About half of randomly-selected households were offered
a subsidized price of about $31 USD, which represented a significant discount over the
baseline average market price of about $45 USD.3 In order to use the subsidies, households
needed to call the call center and request a desludging using the matching platform. Each
household had two subsidized desludgings available to use in a twelve month period. The
availability of these experimental subsidies ended in mid-2014.

Key for this paper is the sampling strategy used to identify subsidized neighborhoods and
comparable neighborhoods without any exposure to the experimental subsidies. The field
team first mapped a set of grid points across the city, placed 200 meters apart, and assigned
every other grid point for possible inclusion in the experimental sample (the “treated” grid
points). The remaining grid points were held out for inclusion in a companion research
project without any associated experiment. These two surveys used similar criteria to include
or exclude particular grid points, and the final retained sample excludes areas connected

3As Deutschmann et al. (2021b) describe, the other half of sampled households were offered subsidized
prices of about $43 USD, representing a small discount over the average price. Take-up at this price was much
lower, although some households did call to redeem these discounts. In what follows, I refer simply to the
experimental subsidies without distinguishing the prices. On average, in a given neighborhood five households
received a “high” subsidy offer and five households received a “low” subsidy offer. In most neighborhoods,
the number of high subsidy offers was between four and six.
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to the sewage network, highly flood-prone areas (in which household sanitation behavior is
necessarily quite different), non-residential areas, and one small region of the city in which
sampling was conducted differently for a different pilot experiment. Figure 1 illustrates
the retained set of grid points which were included for each research project. I rely on
the locations of these grid points to determine whether a particular area of the city was
exposed to experimental subsidies. The surveys conducted with households near treated
and non-treated grid points were distinct in time and relied on slightly different criteria for
inclusion of a particular household, so I do not directly consider household characteristics
from those surveys for my primary empirical strategy.4

Figure 1: Location of sampled grid points in Dakar

Cluster Type

Control

Treatment

Two years after the conclusion of the experiments, in 2017, ONAS launched an extensive
campaign to boost mechanized desludging use. They offered households a fixed, subsidized
price almost exactly equal to the “high” subsidy previously offered during the experimental
phase of the project.5 This new subsidy was available city-wide and advertised extensively,
including with billboards, radio spots, and promoted posts on social media platforms (Figure

4As Figure 1 shows, in some areas of the city only treated or non-treated grid points were ultimately
surveyed, whereas the areas in between were not surveyed in the other survey. In Appendix A I compare
results when I use the “full” set of grid points or restrict to the “dense” grid points which all have at least
one direct neighbor of the other status. These results are ultimately quite similar.

5The “high” subsidy of Lipscomb and Schechter (2018) was 17,000 CFA, whereas the 2017 subsidy
campaign advertised a fixed price of 16,500 CFA.
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A.1). As with the experiment, to access the subsidy households needed to call the call center
to request a desludging using the matching platform.

I use administrative data covering the universe of household service requests made to
the platform. The platform operated almost continuously from 2013 to 2018, and again in
2019.6 Households in the data are geo-located using one of two strategies. About one third
of platform users match directly to a baseline census conducted in Dakar in 2012, meaning I
observe precise coordinates for their location.7 The remaining two-thirds are geo-located
using a system of landmarks, which matches households to the closest major landmark.8

I match each household service request to the nearest grid point. In the main analysis
below, I restrict the sample to requests within 100 meters of a grid point, since this exactly
bisects the distance between treated and non-treated grid points.9 Figure A.2 demonstrates
visually how I attribute households in the data to nearby grid points. Figure 2 shows the
total volume of requests handled by the platform in each six-month period, with requests
categorized as “near” treated or non-treated grid points following this attribution strategy.

3 Empirical Strategy

In this section, I briefly discuss the empirical strategy and identification assumptions. I
conduct empirical analysis at the grid point level using administrative data on all household
requests for mechanized desludgings recorded in the matching platform. I assign household
requests to the closest grid point using their location information, as described above in
Section 2. I construct a panel at the grid point level for each six-month period, such that
time periods t align with the two subsidy campaigns and include four intervening time
periods during which use of the platform was not subsidized.10 For each outcome of interest,

6Due to a change in overall government sanitation strategy, ONAS elected to close the platform in 2018
and transfer its management to a social enterprise. This transition began in April 2018 and the service
became operational again in February 2019.

7This baseline census was conducted by Water and Sanitation for Africa. It involved a simple mapping
exercise to establish areas of the city not connected to the sewage network and develop a database of names,
phone numbers, and locations of households in the city with septic pits. The census mapped approximately
65,000 households, which formed the initial database of prospective clients for the platform. Any callers
whose phone numbers did not match to an existing entry were added as a new client, with location determined
by their closest landmark.

8This landmark system is a core feature of the platform’s underlying auction platform, described in
Deutschmann et al. (2021a). Because Dakar does not have a popularly-used system of addresses, this is
the primary means by which a platform operator can record a household’s location for service provision.
The platform database includes more than 2000 landmarks, and the median distance from a household with
precise coordinates to the nearest landmark is 93 meters. Results shown below are similar, although less
precisely estimated, when restricted to households with precise coordinates.

9In Appendix A I demonstrate how my results compare if I consider different distance cutoffs.
10The original subsidy campaign of Lipscomb and Schechter (2018) was twelve months long, but for

comparability with the later campaign I consider only the last six months of the subsidized period as the first
time period of interest. Most subsidized desludgings during the experiment occurred during this period. The
subsequent city-wide campaign ran for six months and launched almost exactly two years after the conclusion
of the experimental subsidies.
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Figure 2: Total volume of household requests per six-month period
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This figure shows the total volume of household requests for desludgings made through the matching platform.
It includes both successful desludgings and requests where the service was not completed, either because the
client declined the offered price or the trucker was unable to complete the job. Requests are categorized as
“near” treated and non-treated grid points based on a 100m meter radius around grid points, consistent with
the primary radius used for analysis in this paper.
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I estimate the following equation:

Yjt = α+
8∑

k=0
(λk1[k = t] + ζk(Tj × 1[k = t])) + ηj + εj (1)

where Yjt is an outcome for grid point j in six-month period t. The primary outcomes
considered below are a dummy variable equal to one if any households near grid point j called
to use the platform in time period t, and a count variable with the number of household
requests. I additionally analyze separately the number of first time and repeat users of the
platform. In my preferred specification, I include grid point fixed effects (ηj) to account for
neighborhood-level, time-invariant differences in use of mechanized desludging due to location,
neighborhood accessibility, and baseline wealth. Results in the main specifications include
standard errors εj clustered at the grid point level. Identification of the key coefficients
of interest, ζk, rests primarily on the assumption that a given grid point’s assignment to
participate in the experiment of Lipscomb and Schechter (2018) was as-good-as-random,
conditional on the sampling methodology described above to identify study areas.

4 Results

In this section, I present results on demand for the platform over time, as well as exploring
heterogeneity and the robustness of my results. First, in Table 1, I present results showing the
per-period intention-to-treat effects of exposure to the experimental subsidies on subsequent
use of the platform. Column 1 reports results from a linear probability model in which the
outcome variable is a dummy equal to one if any households from the grid point neighborhood
called to use the platform. Figure 3a presents these same results in graphical form. The first
row (Treated × Experimental subsidies) demonstrates that there was indeed an increase in
platform use when the experimental subsidies were active. For the 18 months following the
cessation of the experimental subsidies, platform use remains persistently higher in treated
areas relative to non-treated areas. Subsequently, when the city-wide subsidy campaign
begins 24 months after the experiment, treated areas are again more likely to have any
households calling to use the platform, and this effect also persists for the six months
following the city-wide campaign.

In Column 2 of Table 1 and in Figure 3b, I show intensive-margin results on the number
of household desludging requests recorded in the platform administrative data. Consistent
with results at the extensive margin, treated neighborhoods exhibit persistently higher
household interest in using the platform for the first 18 months after subsidies end, and
again when city-wide subsidies become available. Over the entire post-subsidy period, the
average treated neighborhood had nearly twice as many calls as the average non-treated
neighborhood. This suggests that a short-term analysis of the effect of the subsidies on
platform use would dramatically understate the total gains in adoption.
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Because this paper relies only on administrative data from the platform, I cannot say
with certainty how many of these calls represent adoption of mechanized desludging itself
and displacement of manual desludging. Deutschmann et al. (2021b) estimate that the
availability of experimental subsidies decreased contemporaneous use of manual desludging
by 10%, and that every averted manual desludging in a neighborhood in Dakar could reduce
the incidence of diarrhea among neighborhing households by 30%.11 If even a small fraction
of the increased platform use in previously-treated neighborhoods represents displaced
manual desludgings, this could lead to a substantial improvement in neighborhood-level
health outcomes.

4.1 Evidence for Spillovers

Beyond the main effects shown above in Table 1, it is of interest to consider whether
we observe evidence of spillovers within neighborhoods. To explore this, I first consider
separately the behavior of first time platform users and repeat callers. If the effects above are
driven largely by repeat customers, this may suggest the subsidies were primarily effective
at shifting longer-run behavior among subsidy recipients. If, instead, results are driven at
least partially by persistent “new” interest in neighborhoods, this would be consistent with
households learning from others in their neighborhood about using the platform to access a
mechanized desludging.

To test this, I present results in Table 2 and Figure 4 where each client call is classified as
a first time or repeat request. The first time a household appears in the administrative data,
I consider this a new request. Any subsequent requests from that household are flagged as
repeat requests.

In the six months after the experimental subsidies, roughly half of the increase in client
requests in treated neighborhoods is driven by first-time users of the platform. Over the
subsequent eighteen months, the proportion of demand driven by repeat users increases.
However, when the city-wide subsidy campaign begins, we again see that about half of the
increased demand in previously-treated areas is driven by entirely new users of the platform.
These results suggest that a sizable fraction of the persistent increase in platform adoption
in previously-treated neighborhood may be driven by spillovers to neighbors of past users.
Short-run subsidies appear to shift adoption at the community level, not just among direct
recipients.

Next, I present results on spatial heterogeneity within grid point neighborhoods. The
median distance from households in the experiment of Lipscomb and Schechter (2018) to
the nearest grid point is 50 meters, and the area defined by a 50m radius around the grid
point is 1/3 the size of the area between 50 and 100m from the grid point. This suggests

11Johnson and Lipscomb (2021) find similarly large reductions in Ouagadougou, Burkina Faso, with
neighborhood-level diarrhea incidence among children reducing significantly as more households switch from
manual to mechanized desludging.
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Table 1: Call center use by period during and after experimental subsidies

(1) (2)
Any Requests Number of Requests

Treated × 0.123∗∗∗ 0.201∗∗∗

experimental subsidies (0.029) (0.054)

Treated × 0.171∗∗∗ 0.555∗∗∗

0-6 months post-subsidies (0.034) (0.091)

Treated × 0.054∗∗ 0.169∗∗∗

6-12 months post-subsidies (0.023) (0.056)

Treated × 0.047∗ 0.182∗∗∗

12-18 months post-subsidies (0.025) (0.066)

Treated × -0.015 -0.004
18-24 months post-subsidies (0.019) (0.035)

Treated × 0.091∗∗∗ 1.018∗∗∗

city-wide subsidies (0.034) (0.383)

Treated × 0.090∗∗∗ 0.256∗∗∗

30-36 months post-subsidies (0.025) (0.052)

Treated × -0.015 -0.005
42-48 months post-subsidies (0.018) (0.029)

0-6 months 0.074∗∗∗ 0.173∗∗∗

post-subsidies (0.023) (0.049)

6-12 months -0.062∗∗∗ -0.102∗∗

post-subsidies (0.020) (0.041)

12-18 months -0.051∗∗ -0.054
post-subsidies (0.020) (0.043)

18-24 months -0.093∗∗∗ -0.156∗∗∗

post-subsidies (0.019) (0.037)

city-wide subsidies 0.159∗∗∗ 1.232∗∗∗

(0.026) (0.220)

30-36 months -0.028 -0.074∗∗

post-subsidies (0.020) (0.033)

42-48 months -0.093∗∗∗ -0.161∗∗∗

post-subsidies (0.018) (0.034)

Observations 6867 6867
Number of grid points 763 763
Non-treated baseline mean 0.125 0.207
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown
at the top of each column) on the treatment dummy and time period dummies.
All regressions include grid point fixed effects. Non-treated baseline mean is
the mean of the outcome variable among non-treated grid points in the initial
experimental subsidies phase. Standard errors (in parentheses) are clustered at
the grid point level. Note that the call center was not in operation in the 36-42
month post-subsidy period.
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Figure 3: Marginal effects of treatment exposure by period

(a) Impact of experimental subsidies on probability of calls from a neighborhood
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(b) Impact of experimental subsidies on volume of calls from a neighborhood
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Results shown in these figures are the per-period treatment effect estimates, shown above in equation (1) as
ζk. Figure 3a matches column 1 of Table 1 and shows estimates in which the outcome is a dummy equal to
one if any households from the area around grid point j called the platform in period t. Figure 3b matches
column 2 of Table 1 and shows estimates in which the outcome is the number of calls received from the
area around grid point j in period t. All regressions include grid point and time period fixed effects, with
standard errors clustered at the grid point level.
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Table 2: Call center use by new and repeat callers

(1) (2)
First-Time Users Repeat Users

Treated × 0.157∗∗∗ 0.004
experimental subsidies (0.039) (0.024)

Treated × 0.309∗∗∗ 0.247∗∗∗

0-6 months post-subsidies (0.060) (0.050)

Treated × 0.058∗∗ 0.111∗∗

6-12 months post-subsidies (0.025) (0.046)

Treated × 0.052∗∗ 0.130∗∗

12-18 months post-subsidies (0.025) (0.050)

Treated × -0.009 0.006
18-24 months post-subsidies (0.015) (0.029)

Treated × 0.478∗∗ 0.540∗∗

city-wide subsidies (0.193) (0.211)

Treated × 0.163∗∗∗ 0.093∗∗∗

30-36 months post-subsidies (0.040) (0.031)

Treated × -0.005 -0.000
42-48 months post-subsidies (0.011) (0.026)

0-6 months 0.099∗∗∗ 0.116∗∗∗

post-subsidies (0.033) (0.023)

6-12 months -0.099∗∗∗ 0.040∗∗

post-subsidies (0.028) (0.018)

12-18 months -0.088∗∗∗ 0.076∗∗∗

post-subsidies (0.027) (0.019)

18-24 months -0.139∗∗∗ 0.025∗∗∗

post-subsidies (0.027) (0.009)

city-wide subsidies 0.635∗∗∗ 0.640∗∗∗

(0.118) (0.116)

30-36 months -0.076∗∗∗ 0.045∗∗∗

post-subsidies (0.026) (0.014)

42-48 months -0.150∗∗∗ 0.031∗∗∗

post-subsidies (0.026) (0.011)

Observations 6867 6867
Number of grid points 763 763
Non-treated baseline mean 0.164 0.000
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown
at the top of each column) on the treatment dummy and time period dummies.
First-Time Users is the number of requests from a given neighorhood for which
a household first appeared in the data. Repeat Users is the number of requests
from a neighborhood by households which had previously used the platform.
All regressions include grid point fixed effects. Non-treated baseline mean is
the mean of the outcome variable among non-treated grid points in the initial
experimental subsidies phase. Standard errors (in parentheses) are clustered at
the grid point level. Note that the call center was not in operation in the 36-42
month post-subsidy period.
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Figure 4: Impact of experimental subsidies on volume of first-time and repeat platform users
from a neighborhood
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*call center service was not available during this period

Results shown in these figures are the per-period treatment effect estimates, shown above in equation (1)
as ζk. ‘First-Time User’ coefficients match column 1 of Table 2, in which the outcome is the number of
households in the area around grid point j who called the platform for the first time in period t. ‘Repeat
User’ coefficients match column 2 of Table 2, in which the outcome is the number of households in the area
around grid point j who called the platform in period t and had previously used the service. All regressions
include grid point and time period fixed effects, with standard errors clustered at the grid point level.

that the “core” of the area around the grid point was treated three times as intensively as
the area between 50 and 100m of the grid point. Thus, households within 50m of treated
grid points may have been more intensively exposed to neighbors using the platform, as well
as possibly more exposed to mechanized desludgings overall. If we observe that platform
use is more persistent within this area, this would be further evidence consistent with
within-neighborhood spillovers in platform awareness that occur in a relatively concentrated
geographic area.

To test this, I present results estimated separately for the “core” and “periphery” of
each grid-point neighborhood. I define the core and periphery of grid-point neighborhoods
as households falling within a 50 meter radius and between 50 and 100 meters from the grid
point, respectively. I present the results of this exercise in Table 3.

Comparing columns 1 and 2 in Table 3, one can see that the treatment effect in the
periphery of the neighborhood declines more quickly to become statistically indistinguishable
from zero twelve months after the conclusion of the experiment. By contrast, treatment
effects in the core areas remain more consistent in both magnitude and statistical significance.
Results at the intensive margin, in columns 3 and 4, generally match this story. Figure 5
presents these results graphically.

These results are consistent with the idea that spillovers play a role in driving persistent
long-run adoption of the platform. This reinforces the results above that demand increases
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are driven in part by new platform users. Coordination and decision spillovers seem to play
an important role in driving community-level changes in a variety of sanitation outcomes
(Bennett, 2012; Deutschmann et al., 2021b). Households in this context typically desludge
no more than once every six months. If increases in platform adoption corresponded to
overall changes in mechanized desludging use, the pattern of gradual disadoption which
occurs more quickly at neighborhood boundaries may suggest the marginal household in the
periphery no longer finds it worthwhile to choose a mechanized desludging if an insufficient
number of neighbors have recently done so, and therefore does not use the platform to
source a desludging. This would be consistent with findings in other contexts studying
Community-Led Total Sanitation programs, in which community-level sanitation gains
persist in the short run but may not persist in the long run (Tyndale-Biscoe et al., 2013;
Crocker et al., 2017; Orgill-Meyer et al., 2019). By contrast, in the core of neighborhoods
treated with subsidies, a larger fraction of households may have changed their behavior
at once, increasing the persistence of platform use with possible implications for overall
adoption of mechanized desludgings.

4.2 Robustness

In my preferred specifications, I rely on a radius of 100 meters to define grid point neighbor-
hoods, since this exactly splits the 200 meter gaps used to initially define the sampling frame
of grid points. Nevertheless, one may wish to verify that the results presented are not driven
entirely by this particular neighborhood definition. In Tables A.1 and A.2 I present results
using two alternative radii (75 meters and 125 meters). These specifications do produce
mild changes in the magnitude of coefficients, but are qualitatively similar and rarely result
in any changes in statistical significance.

Additionally, as described above in Section 2, in my preferred specifications I include all
grid points surveyed in the two baseline surveys. In Columns 1-3 of Tables A.1 and A.2, I
present results when I restrict analysis to “dense” grid points, since in some areas of the
city only treated or non-treated grid points ended up being surveyed. Using this alternative
sample definition, there are mild changes in the magnitude of coefficients but qualitatively
similar results.

Finally, despite the plausibly random assignment of treatment status, the strategy of
assigning every other grid point to treatment status means that the treatment status of
a given grid point is perfectly negatively correlated with its immediate neighbors. This
complicates the use of standard randomization inference procedures (Young, 2019) as there
are only two possible treatment assignments that maintain both the spatial correlation and
the location of grid points. I proceed with two exercises in the spirit of randomization
inference, in which I relax in turn the maintained spatial correlation and the fixed location
of grid points. The results of these exercises are shown in Table A.4.

First, I fix the set of grid points as in the experiment, but relax the “every-other-grid-
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Table 3: Call center use by period during and after experimental subsidies, with neighborhood
core and periphery considered separately

Any Requests Number of Requests
(1) (2) (3) (4)

0-50m 50-100m 0-50m 50-100m

Treated × 0.082∗∗∗ 0.055∗∗ 0.108∗∗∗ 0.094∗∗

experimental subsidies (0.019) (0.026) (0.029) (0.045)

Treated × 0.131∗∗∗ 0.083∗∗∗ 0.317∗∗∗ 0.238∗∗∗

0-6 months post-subsidies (0.024) (0.029) (0.056) (0.071)

Treated × 0.038∗∗ 0.020 0.096∗∗∗ 0.073∗

6-12 months post-subsidies (0.016) (0.019) (0.035) (0.042)

Treated × 0.052∗∗∗ 0.006 0.119∗∗∗ 0.063
12-18 months post-subsidies (0.016) (0.020) (0.041) (0.052)

Treated × -0.007 -0.010 -0.007 0.004
18-24 months post-subsidies (0.012) (0.016) (0.021) (0.027)

Treated × 0.066∗∗∗ 0.064∗∗ 0.449∗∗∗ 0.569∗

city-wide subsidies (0.024) (0.032) (0.166) (0.324)

Treated × 0.066∗∗∗ 0.034 0.127∗∗∗ 0.128∗∗∗

30-36 months post-subsidies (0.016) (0.022) (0.030) (0.043)

Treated × -0.001 -0.014 -0.005 -0.000
42-48 months post-subsidies (0.009) (0.015) (0.015) (0.024)

0-6 months 0.034∗∗ 0.040∗ 0.057∗∗ 0.116∗∗∗

post-subsidies (0.014) (0.021) (0.025) (0.043)

6-12 months -0.003 -0.068∗∗∗ -0.003 -0.099∗∗∗

post-subsidies (0.011) (0.018) (0.019) (0.034)

12-18 months -0.011 -0.051∗∗∗ -0.011 -0.042
post-subsidies (0.010) (0.018) (0.018) (0.038)

18-24 months -0.008 -0.093∗∗∗ -0.014 -0.142∗∗∗

post-subsidies (0.010) (0.017) (0.016) (0.031)

city-wide subsidies 0.076∗∗∗ 0.125∗∗∗ 0.317∗∗∗ 0.915∗∗∗

(0.017) (0.025) (0.081) (0.197)

30-36 months -0.008 -0.028 -0.017 -0.057∗∗

post-subsidies (0.010) (0.019) (0.016) (0.027)

42-48 months -0.020∗∗ -0.085∗∗∗ -0.028∗∗ -0.133∗∗∗

post-subsidies (0.008) (0.017) (0.014) (0.029)

Observations 6867 6867 6867 6867
Number of grid points 763 763 763 763
Non-treated baseline mean 0.023 0.113 0.034 0.173
Results in this table are from linear regressions of the outcome variables (shown at the top of
each column) on the treatment dummy and time period dummies. Columns 1 and 3 consider
the area within 50 meters of grid points, whereas columns 2 and 4 consider the area between 50
and 100 meters from grid points. All regressions include grid point fixed effects. Non-treated
baseline mean is the mean of the outcome variable among non-treated grid points in the initial
experimental subsidies phase. Standard errors (in parentheses) are clustered at the grid point
level. Note that the call center was not in operation in the 36-42 month post-subsidy period.
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Figure 5: Marginal effects of treatment exposure by period, in core and periphery of grid
point neighborhoods

(a) Impact of experimental subsidies on probability of calls from a neighborhood
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(b) Impact of experimental subsidies on volume of calls from a neighborhood
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Results shown in these figures are the per-period treatment effect estimates, shown above in equation (1) as
ζk. Figure 5a matches columns 1 and 2 of Table 3 and shows estimates in which the outcome is a dummy
equal to one if any households from the area around grid point j called the platform in period t. Figure
5b matches columns 3 and 4 of Table 3 and shows estimates in which the outcome is the number of calls
received from the area around grid point j in period t. All regressions include grid point and time period
fixed effects, with standard errors clustered at the grid point level.
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point” treatment assignment. Instead, I conduct a simple randomization inference procedure
in which counterfactual treatment assignments can have any spatial correlation, conditional
on the set of grid points included in the analysis. The results of these procedures, shown in
square brackets in Table A.4, are not substantially different from the conventional p-values
from the main regression analysis.

Second, I fix the spatial structure of treatment assignment, and randomly shift the set of
grid points by up to 100 meters in any direction. For a given counterfactual set of grid points,
I repeat the procedure of assigning households to neighborhoods (illustrated above in Figure
A.2) and create the resulting counterfactual cluster-level panel. Results of these procedures
are shown in curly brackets in Table A.4. In general, they mirror the previous randomization
inference exercise and the conventional p-values, with several exceptions where the p-values
from this procedure exceed conventional levels of significance in contrast to results from the
other procedures. Nevertheless, the qualitative interpretation of my results generally holds.

5 Conclusion

In this paper, I have explored the dynamics of consumer adoption of a matching platform
for sanitation services in Dakar, Senegal. I have shown that short-run subsidies designed to
induce households to source mechanized desludgings through the matching platform had
lasting impacts on household demand for the platform, and I provide evidence consistent
with within-neighborhood spillovers in platform demand. This is an important market
to study consumer decisions: by reducing search costs and increasing the convenience of
sourcing a mechanized desludging, the matching platform may induce households to switch
away from using manual desludging to empty their septic pits.

My paper has implications for the design of optimal sanitation policy, and more broadly
for our understanding of the role of short-run subsidies in driving longer-run technology
adoption. In this case, past exposure to subsidies increased use of the matching platform
both when it was and was not subsidized. As previous work has shown, this is not universally
true in other health and sanitation contexts (Dupas, 2014b; Fischer et al., 2019; Bensch
and Peters, 2020; Carter et al., 2021; Meriggi et al., 2021). For policymakers interested in
increasing adoption of matching platforms, and for firms seeking to establish these platforms,
my results suggest a role for short-run subsidies. Taken together with the results of Johnson
and Lipscomb (2021), targeted short-term discounts for the poorest households may be
a cost-effective strategy for inducing longer-run behavioral change, perhaps re-occurring
periodically to reinforce the longer-run change. Furthermore, I show that these effects of
these subsidies may spill over within neighborhoods, inducing new households to adopt the
platform in addition to sparking persistent changes in demand among recipients. Subsidies
may also be particularly effective when geographically concentrated, as suggested by the
spatial heterogeneity I observe in my results.
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Future work could further explore the link between adoption of the matching platform and
switching towards mechanized desludging itself. Do matching platforms like the one studied
in this paper represent an opportunity to reduce behaviors with costly health externalities,
or do they primarily capture interest from consumers who would already have chosen the
more sanitary option to desludge their pits? The data used for this paper do not permit
me to conclude with certainty that the increase in platform adoption represents an overall
reduction in manual desludging. Nevertheless, the magnitude of the change in adoption
would represent a substantial improvement in health conditions in previously-subsidized
neighborhood if it did correspond to changes in overall desludging behavior.
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A Additional Tables and Figures

Figure A.1: Advertising for the city-wide subsidy campaign
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Table A.1: Robustness table: Call center use (extensive margin) by period during and after
experimental subsidies, with different sample definitions and neighborhood radius thresholds

Dense grid points All grid points
(1) (2) (3) (4) (5) (6)

100m 75m 125m 100m 75m 125m

Treated × 0.132∗∗∗ 0.117∗∗∗ 0.174∗∗∗ 0.123∗∗∗ 0.114∗∗∗ 0.170∗∗∗

experimental subsidies (0.032) (0.027) (0.035) (0.029) (0.024) (0.031)

Treated × 0.183∗∗∗ 0.165∗∗∗ 0.194∗∗∗ 0.171∗∗∗ 0.160∗∗∗ 0.176∗∗∗

0-6 months post-subsidies (0.037) (0.033) (0.040) (0.034) (0.029) (0.036)

Treated × 0.063∗∗ 0.069∗∗∗ 0.062∗∗ 0.054∗∗ 0.059∗∗∗ 0.050∗

6-12 months post-subsidies (0.026) (0.022) (0.029) (0.023) (0.020) (0.026)

Treated × 0.055∗∗ 0.059∗∗ 0.055∗ 0.047∗ 0.050∗∗ 0.051∗

12-18 months post-subsidies (0.027) (0.023) (0.031) (0.025) (0.021) (0.028)

Treated × -0.016 -0.010 -0.005 -0.015 -0.009 -0.007
18-24 months post-subsidies (0.021) (0.018) (0.025) (0.019) (0.016) (0.022)

Treated × 0.097∗∗∗ 0.094∗∗∗ 0.137∗∗∗ 0.091∗∗∗ 0.099∗∗∗ 0.121∗∗∗

city-wide subsidies (0.037) (0.034) (0.038) (0.034) (0.031) (0.035)

Treated × 0.108∗∗∗ 0.092∗∗∗ 0.128∗∗∗ 0.090∗∗∗ 0.083∗∗∗ 0.106∗∗∗

30-36 months post-subsidies (0.028) (0.023) (0.031) (0.025) (0.021) (0.028)

Treated × 0.002 0.006 0.017 -0.015 -0.006 -0.001
42-48 months post-subsidies (0.019) (0.015) (0.022) (0.018) (0.014) (0.020)

0-6 months 0.086∗∗∗ 0.062∗∗∗ 0.121∗∗∗ 0.074∗∗∗ 0.054∗∗∗ 0.116∗∗∗

post-subsidies (0.026) (0.022) (0.028) (0.023) (0.019) (0.025)

6-12 months -0.069∗∗∗ -0.048∗∗∗ -0.055∗∗ -0.062∗∗∗ -0.042∗∗∗ -0.048∗∗

post-subsidies (0.023) (0.018) (0.026) (0.020) (0.016) (0.022)

12-18 months -0.055∗∗ -0.038∗∗ -0.038 -0.051∗∗ -0.034∗∗ -0.034
post-subsidies (0.023) (0.019) (0.025) (0.020) (0.016) (0.022)

18-24 months -0.100∗∗∗ -0.048∗∗∗ -0.103∗∗∗ -0.093∗∗∗ -0.045∗∗∗ -0.096∗∗∗

post-subsidies (0.022) (0.017) (0.023) (0.019) (0.015) (0.020)

city-wide subsidies 0.155∗∗∗ 0.128∗∗∗ 0.169∗∗∗ 0.159∗∗∗ 0.125∗∗∗ 0.181∗∗∗

(0.030) (0.026) (0.031) (0.026) (0.023) (0.028)

30-36 months -0.034 -0.024 -0.017 -0.028 -0.025∗ -0.008
post-subsidies (0.023) (0.017) (0.026) (0.020) (0.015) (0.023)

42-48 months -0.107∗∗∗ -0.059∗∗∗ -0.121∗∗∗ -0.093∗∗∗ -0.051∗∗∗ -0.105∗∗∗

post-subsidies (0.021) (0.016) (0.022) (0.018) (0.014) (0.019)

Observations 5886 5886 5886 6867 6867 6867
Number of grid points 654 654 654 763 763 763
Non-treated baseline mean 0.138 0.076 0.155 0.125 0.068 0.139
Results in this table are from linear regressions of a dummy variable indicating any household calls from that
neighborhood on the treatment dummy and time period dummies. Columns 1, 2, and 3 use the main sample of 654
grid points as described in Section 2, whereas columns 4, 5, and 6 use all 763 grid points surveyed. Columns 1 and
4 use the preferred 100m radius to define grid point neighborhoods, whereas columns 2 and 5 use 75m and columns
3 and 6 use 125m to define neighborhoods. All regressions include grid point fixed effects. Non-treated baseline
mean is the mean of the outcome variable among non-treated grid points in the initial experimental subsidies phase.
Standard errors (in parentheses) are clustered at the grid point level. Note that the call center was not in operation
in the 36-42 month post-subsidy period.
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Table A.2: Robustness table: Call center volume of use by period during and after experi-
mental subsidies, with different sample definitions and neighborhood radius thresholds

Dense grid points All grid points
(1) (2) (3) (4) (5) (6)

100m 75m 125m 100m 75m 125m

Treated × 0.214∗∗∗ 0.194∗∗∗ 0.313∗∗∗ 0.201∗∗∗ 0.182∗∗∗ 0.300∗∗∗

experimental subsidies (0.060) (0.047) (0.074) (0.054) (0.042) (0.065)

Treated × 0.585∗∗∗ 0.508∗∗∗ 0.718∗∗∗ 0.555∗∗∗ 0.478∗∗∗ 0.651∗∗∗

0-6 months post-subsidies (0.099) (0.081) (0.118) (0.091) (0.075) (0.109)

Treated × 0.196∗∗∗ 0.177∗∗∗ 0.241∗∗∗ 0.169∗∗∗ 0.149∗∗∗ 0.203∗∗∗

6-12 months post-subsidies (0.063) (0.051) (0.078) (0.056) (0.045) (0.068)

Treated × 0.168∗∗ 0.137∗∗∗ 0.239∗∗ 0.182∗∗∗ 0.136∗∗∗ 0.256∗∗∗

12-18 months post-subsidies (0.069) (0.052) (0.095) (0.066) (0.051) (0.087)

Treated × -0.007 -0.008 0.042 -0.004 -0.009 0.036
18-24 months post-subsidies (0.039) (0.033) (0.051) (0.035) (0.029) (0.044)

Treated × 1.084∗∗∗ 1.008∗∗∗ 1.452∗∗ 1.018∗∗∗ 0.918∗∗∗ 1.381∗∗∗

city-wide subsidies (0.415) (0.313) (0.587) (0.383) (0.280) (0.532)

Treated × 0.277∗∗∗ 0.206∗∗∗ 0.302∗∗∗ 0.256∗∗∗ 0.191∗∗∗ 0.279∗∗∗

30-36 months post-subsidies (0.054) (0.045) (0.068) (0.052) (0.041) (0.063)

Treated × 0.024 0.019 0.081∗ -0.005 -0.000 0.044
42-48 months post-subsidies (0.032) (0.025) (0.045) (0.029) (0.023) (0.039)

0-6 months 0.193∗∗∗ 0.107∗∗∗ 0.262∗∗∗ 0.173∗∗∗ 0.105∗∗∗ 0.269∗∗∗

post-subsidies (0.055) (0.039) (0.068) (0.049) (0.037) (0.064)

6-12 months -0.110∗∗ -0.062∗ -0.107∗ -0.102∗∗ -0.057∗∗ -0.093∗

post-subsidies (0.048) (0.032) (0.059) (0.041) (0.027) (0.051)

12-18 months -0.055 -0.041 -0.031 -0.054 -0.034 -0.031
post-subsidies (0.051) (0.033) (0.063) (0.043) (0.029) (0.053)

18-24 months -0.166∗∗∗ -0.062∗∗ -0.207∗∗∗ -0.156∗∗∗ -0.059∗∗ -0.190∗∗∗

post-subsidies (0.043) (0.031) (0.051) (0.037) (0.026) (0.044)

city-wide subsidies 1.266∗∗∗ 0.617∗∗∗ 1.679∗∗∗ 1.232∗∗∗ 0.589∗∗∗ 1.649∗∗∗

(0.241) (0.117) (0.300) (0.220) (0.106) (0.268)

30-36 months -0.090∗∗ -0.045∗ -0.041 -0.074∗∗ -0.045∗∗ -0.025
post-subsidies (0.038) (0.026) (0.064) (0.033) (0.023) (0.054)

42-48 months -0.183∗∗∗ -0.083∗∗∗ -0.238∗∗∗ -0.161∗∗∗ -0.074∗∗∗ -0.207∗∗∗

post-subsidies (0.040) (0.027) (0.048) (0.034) (0.023) (0.040)

Observations 5886 5886 5886 6867 6867 6867
Number of grid points 654 654 654 763 763 763
Non-treated baseline mean 0.228 0.110 0.286 0.207 0.099 0.255
Results in this table are from linear regressions of the number of household calls from a neighborhood on the
treatment dummy and time period dummies. Columns 1, 2, and 3 use the main sample of 654 grid points as
described in Section 2, whereas columns 4, 5, and 6 use all 763 grid points surveyed. Columns 1 and 4 use the
preferred 100m radius to define grid point neighborhoods, whereas columns 2 and 5 use 75m and columns 3 and 6
use 125m to define neighborhoods. All regressions include grid point fixed effects. Non-treated baseline mean is the
mean of the outcome variable among non-treated grid points in the initial experimental subsidies phase. Standard
errors (in parentheses) are clustered at the grid point level. Note that the call center was not in operation in the
36-42 month post-subsidy period.
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Table A.3: Call center use by period during and after experimental subsidies, sample
restricted to precise coordinates

(1) (2)
Any Requests Number of Requests

Treated × 0.104∗∗∗ 0.155∗∗∗

experimental subsidies (0.026) (0.045)

Treated × 0.128∗∗∗ 0.336∗∗∗

0-6 months post-subsidies (0.031) (0.067)

Treated × 0.059∗∗∗ 0.169∗∗∗

6-12 months post-subsidies (0.019) (0.047)

Treated × 0.028 0.135∗∗∗

12-18 months post-subsidies (0.018) (0.047)

Treated × -0.006 0.005
18-24 months post-subsidies (0.013) (0.022)

Treated × 0.067∗∗ 0.257∗∗

city-wide subsidies (0.029) (0.100)

Treated × 0.015 0.037∗

30-36 months post-subsidies (0.017) (0.022)

Treated × -0.006 0.010
42-48 months post-subsidies (0.013) (0.020)

0-6 months 0.074∗∗∗ 0.122∗∗∗

post-subsidies (0.021) (0.039)

6-12 months -0.062∗∗∗ -0.102∗∗∗

post-subsidies (0.017) (0.031)

12-18 months -0.051∗∗∗ -0.079∗∗

post-subsidies (0.016) (0.031)

18-24 months -0.071∗∗∗ -0.113∗∗∗

post-subsidies (0.015) (0.029)

city-wide subsidies 0.093∗∗∗ 0.286∗∗∗

(0.023) (0.069)

30-36 months -0.048∗∗∗ -0.099∗∗∗

post-subsidies (0.018) (0.029)

42-48 months -0.068∗∗∗ -0.116∗∗∗

post-subsidies (0.015) (0.028)

Observations 6867 6867
Number of grid points 763 763
Non-treated baseline mean 0.082 0.133
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown
at the top of each column) on the treatment dummy and time period dummies.
The sample is restricted to platform users with precise GPS coordinates and
excludes households geo-localized only with the nearest landmark. All regressions
include grid point fixed effects. Non-treated baseline mean is the mean of the
outcome variable among non-treated grid points in the initial experimental
subsidies phase. Standard errors (in parentheses) are clustered at the grid
point level. Note that the call center was not in operation in the 36-42 month
post-subsidy period.
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Table A.4: Call center use by period during and after experimental subsidies, with random-
ization inference p-values

(1) (2)
Any Requests Number of Requests

Treated × 0.13*** 0.21***
experimental subsidies (0.030) (0.060)

[0.00] [0.00]
{0.03} {0.18}

Treated × 0.18*** 0.58***
0-6 months post-subsidies (0.040) (0.100)

[0.00] [0.00]
{0.02} {0.02}

Treated × 0.06** 0.20***
6-12 months post-subsidies (0.030) (0.060)

[0.01] [0.03]
{0.17} {0.08}

Treated × 0.05** 0.17**
12-18 months post-subsidies (0.030) (0.070)

[0.04] [0.05]
{0.33} {0.21}

Treated × -0.02 -0.01
18-24 months post-subsidies (0.020) (0.040)

[0.37] [0.94]
{0.67} {0.92}

Treated × 0.10*** 1.08***
city-wide subsidies (0.040) (0.420)

[0.00] [0.02]
{0.04} {0.00}

Treated × 0.11*** 0.28***
30-36 months post-subsidies (0.030) (0.050)

[0.00] [0.00]
{0.00} {0.00}

Treated × 0.00 0.02
42-48 months post-subsidies (0.020) (0.030)

[0.89] [0.75]
{0.92} {0.69}

Observations 5886 5886
Number of grid points 654 654
Non-treated baseline mean 0.138 0.228
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown
at the top of each column) on the treatment dummy and time period dummies.
All regressions include grid point fixed effects. Non-treated baseline mean is
the mean of the outcome variable among non-treated grid points in the initial
experimental subsidies phase. Standard errors (in parentheses) are clustered
at the grid point level. P-values from two randomization inference procedures
(with 250.00 iterations) are shown in square and curly brackets. See Section 4.2
for more on these procedures. Note that the call center was not in operation in
the 36-42 month post-subsidy period.
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Figure A.2: Example of household attribution to nearby grid points

: location of household desludging request

30


	Introduction
	Context and Data 
	Empirical Strategy 
	Results 
	Evidence for Spillovers
	Robustness 

	Conclusion 
	Additional Tables and Figures 

