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Abstract

I study the longer-run dynamics of household use of a public service in response to short-
term subsidies. I exploit spatial variation in exposure to subsidies that induced house-
holds to use a publicly-provided matching platform for sanitation services in Dakar,
Senegal. Using platform administrative data, I show that neighborhoods exposed to
short-term subsidies are significantly more likely to use the platform after subsidies end,
but this effect declines gradually to zero over time. Following a subsequent city-wide
subsidy campaign two years later, increased use re-emerges in previously-subsidized
neighborhoods before declining again. The pattern of decline and re-emergence shows
that short-term subsidies can have persistent effects, but sustaining these effects may
require repeated intervention.
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1 Introduction

Short-term subsidies are a common tool in environmental and development policy to spark
demand for a new technology, internalize externalities, and generate technological innova-
tion. Subsidies could have positive longer-run impacts if they facilitate learning (Dupas,
2014; Bensch and Peters, 2020; Carter et al., 2021; Meriggi et al., 2021) or negative impacts
if they anchor households to a reference price (Kőszegi and Rabin, 2006; Fischer et al., 2019).
Short-term subsidies could also generate longer-run impacts when network externalities are
present in two-sided markets, or when there are increasing health benefits (Jullien et al.,
2021; Springel, 2021; Deutschmann et al., 2024b). The longer-run impacts of short-term
interventions can have dramatic implications for assessing their cost-effectiveness (Allcott
and Rogers, 2014; Baird et al., 2016).

In this paper, I ask whether exposure to short-term subsidies increases longer-run house-
hold use of a platform for sanitation services, both after subsidies end and when new sub-
sidies become available. Externalities and features of decentralized markets for sanitation
services, including high search costs and supplier market power, impact household sanita-
tion choices (Kresch et al., 2020; Augsburg et al., 2024; Houde et al., 2024). Platforms to
centralize the market and match households to service providers have the potential to ad-
dress frictions and improve safe management of fecal sludge, including reducing search costs
and undercutting collusive behavior (Gehrig, 1993; Bakos, 1997; Brown and Goolsbee, 2002;
Cramer and Krueger, 2016; Farronato and Fradkin, 2018; Gaineddenova, 2022; Dillon et al.,
2024; Houde et al., 2024). Platforms can also be an effective tool for delivering targeted
subsidies and internalizing some of the externalities inherent in household sanitation choices
(Johnson and Lipscomb, 2021).1 Governments, social enterprises, and non-profit organiza-
tions have launched platforms for sanitation services in at least ten countries (Markandya,
2019; GSMA, 2020; CWIS, 2021; Johnson and Lipscomb, 2021; Pit Vidura, 2021; USAID,
2021).2

I study this question in Dakar, Senegal, where in 2014 the government launched a
platform and call center to connect households with providers of mechanized desludging
services using auctions (Deutschmann et al., 2024a). Management of fecal sludge is a
key environmental and public health challenge for many cities in low- and middle-income
countries, including Dakar. Rapid urbanization means many households lack access to
the sewage network and must instead use on-site sanitation systems, such as septic pits
or tanks, which fill and must be emptied. Unsafe management of fecal sludge degrades
local water quality, causes substantial economic losses, and increases diarrheal disease and
death, particularly among children (Garg et al., 2018; UN Environmental Programme, 2020;

1Once established, platforms can also be useful for delivering other services and targeted information
(Pakhtigian et al., 2024).

2Platforms are also being increasingly used for other public services like solid waste disposal in low-income
countries (PROMOGED, 2022; Sowe, 2024).
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Cameron et al., 2022). Safe management of on-site sanitation systems typically requires
hiring a mechanized truck to “desludge” the pit, but in many neighborhoods of Dakar
less than half of households relied on mechanized desludging in 2013 (Houde et al., 2024).
Instead, households often turn to cheaper “manual” alternatives which result in sludge being
disposed in streets, courtyards, or stormwater canals.

I exploit quasi-random variation in neighborhood-level exposure to short-term subsi-
dies which induced households to use the platform. Starting in mid 2014, Lipscomb and
Schechter (2018) conducted an experiment which offered subsidies to about 3700 randomly-
selected households in about 400 neighborhoods for the purchase of a mechanized desludging
service. These experimental subsidies were available for one year and allowed households
to purchase two mechanized desludgings of their septic pit for a fixed price of about $34
USD each, roughly 66% of the average market price. To access the experimental subsidies,
households were required to call in and use the matching platform.

To identify the impact of these short-term experimental subsidies on later use of the
platform, I rely on a key feature of the sampling strategy of Lipscomb and Schechter (2018),
which selected about 800 grid points from a 200 x 200 meter grid in residential areas with-
out sewer access.3 As a rule, every second grid point was selected for possible inclusion in
the experiment. This “checkerboard” sampling results in a set of about 400 non-treated
neighborhoods which are tightly interspersed with the roughly 400 treated grid point neigh-
borhoods from the experiment. Households in both types of neighborhoods received a
baseline survey, and the two sets of neighborhoods are comparable on average observable
characteristics at baseline. Both types of neighborhoods had equal access to the platform.
I compare outcomes in the set of neighborhoods selected to receive experimental subsidies
with the tightly interspersed set of non-treated neighborhoods who received no such subsi-
dies. I construct take-up at the neighborhood level using usage data from the platform.

I first show that the experimental subsidies were effective at increasing contemporaneous
household adoption of the platform in treated neighborhoods relative to non-treated neigh-
borhoods, as measured by the number of unique service requests submitted by households.
In the first six months of the subsidized period, which coincided with the public launch
and scale-up of the platform, treated neighborhoods had 0.21 more service requests than
non-treated neighborhoods, a 23 percent increase. In the subsequent six months, usage in
non-treated neighborhoods declined substantially (from 0.93 requests per neighborhood to
0.31), but there are still about 0.3 more requests from treated neighborhoods than from
non-treated neighborhoods, a 96 percent increase. This finding uses a distinct empirical
strategy and additional sample to Lipscomb and Schechter (2018), who look at the impact
of subsidies within treated neighborhoods and find that a randomized offer of a subsidized
desludging increased use of mechanized desludging in the following year by 0.03 p.p (8

3Throughout the paper, unless otherwise specified I use the term neighborhood to refer to the area defined
by a circle with a radius of 100 meters centered at each grid point. 100 meters exactly bisects the distance
to the next grid point.
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percent) relative to a baseline average of 0.32.
Second, I explore the dynamics of platform use after the experimental subsidies were no

longer available. In the six months after subsidy availability ended, previously-treated neigh-
borhoods had 0.59 more requests than non-treated neighborhoods, a 139 percent increase.
Although overall requests declined over time, usage of the platform remained significantly
higher in previously-treated neighborhoods until 18 months after the end of the experiment,
at which point usage became statistically indistinguishable from non-treated neighborhoods.
The decline in treatment effects over time suggests that behavior changes may not persist
indefinitely absent additional intervention or advertising.

Third, I test whether past experience with subsidies and the platform causes households
in previously-treated neighborhoods to respond differently to a new round of subsidies. In
2017, two years after the experimental subsidies ended, the government ran a major city-
wide subsidy and advertising campaign in Dakar intended to increase adoption of improved
sanitation services.4 As before, accessing these subsidies required calling the call center and
using the platform to find a service provider. I find that previously-treated neighborhoods
had 1.1 (73 percent) more requests during the city-wide subsidy campaign relative to non-
treated neighborhoods.5 Following the conclusion of the city-wide subsidy campaign, usage
dropped in all neighborhoods but again continued at relatively higher levels in previously-
treated neighborhoods for the first six months before fading out.

I explore mechanisms and find suggestive evidence that the effects of the experimental
subsidy intervention were not limited to direct recipients. In the twelve months following the
conclusion of the experiment, previously-treated neighborhoods had more request volume
than non-treated neighborhoods from users who had not used the platform during the period
of the experiment. This could suggest that information about the platform is shared within
neighborhoods, consistent with findings from Deutschmann et al. (2024b) that referrals are
an important channel for sourcing information about sanitation service providers.

I additionally look at desludgings successfully sourced through the platform, which are
a subset of household requests. I find that the experimental subsidy intervention leads to
more sanitation services successfully sourced through the platform in the subsequent three
years, both when the prices were unsubsidized and during the city-wide subsidy campaign,
but the effects are generally small in absolute terms. At its peak, during the city-wide sub-
sidy campaign, I estimate that previously-treated neighborhoods saw about one additional
desludging sourced through the platform, or a 72 percent increase relative to about 1.4
desludgings per non-treated neighborhood.

A limitation of this paper is that I do not observe household sanitation behavior outside
the platform in cases where a household request did not lead to a desludging sourced through

4The campaign offered households anywhere in the city mechanized desludgings for a fixed, subsidized
price of about $33 USD, one dollar cheaper than the price previously offered during the experiment.

5This finding is consistent with recent work showing prior exposure to an intervention implemented by
an NGO increases subsequent uptake of a similar intervention (Usmani et al., 2024).

4



the platform. Household service requests that do not lead to desludgings may still increase
welfare if they allow households to negotiate better prices outside the market or discipline
service providers to behave more competitively (Deutschmann et al., 2024a; Rudder and
Dillon, 2024). There may also be additional benefits over time for households that my
data would not capture, if using the platform once allows households to identify a new
high-quality service provider with whom they can contract directly in the future.

This paper contributes to the literature on the fading impacts of short-term interven-
tions. This has been documented most clearly in the literature on habit formation, with
Caro-Burnett et al. (2021) finding that subsidies induce short-term changes in adoption of
improved toilets, but behavior changes decay over time and become statistically indistin-
guishable from control-group participants. Hussam et al. (2022) similarly find that financial
incentives increase handwashing, but the effects decay over time. I demonstrate a similar
pattern in the adoption of a platform for sanitation services which, in contrast to toilet use
or handwashing, is not something likely to develop a habit given that households typically
only need to desludge 1-2 times per year.

I also contribute to the literature studying consumer interactions with platforms in
two-sided markets (Rysman, 2009). The platform I study reduces time costs for households
seeking to source mechanized desludging services, and during subsidized periods also offered
highly discounted prices. Past work has shown that consumers are responsive to both
prices and service wait times in ride-sharing platforms (Goldszmidt et al., 2020; List, 2021).
Intermediation in decentralized markets with high search costs, like residential solar or
urban waste management, can improve welfare for both buyers and sellers (Salz, 2022;
Dorsey, 2024). I study a context where services are needed infrequently but regularly by
households, in contrast to ride sharing or urban waste markets where users may participate
in markets frequently, or residential solar sales where users may only participate once. Short-
term subsidies may have different implications when the need for a service is infrequent, if
households have sticky reference points that adjust either over time or based on recent
market experiences (Kőszegi and Rabin, 2006; Thakral and Tô, 2021), or if price variation
causes persistent changes in preferences (Severen and Van Benthem, 2022). I contribute by
showing that consumer use of a platform persists after short-term subsidies end but declines
over time, and that repeated discounts can provide a spark to re-engage households.

I additionally contribute to a broader literature on short-term subsidies and longer-run
effects in environmental quality, health, and sanitation. Households generally exhibit low
willingness to pay at market prices for mechanized desludging and latrines (Jenkins et al.,
2015; Ben Yishay et al., 2017; Burt et al., 2019; Peletz et al., 2020; Armand et al., 2023).
Subsidies can increase adoption and change household behavior, but less is known about
the conditions under which these changes persist (Pakhtigian et al., 2022). My results
suggest that the longer-run impacts of the subsidies of Lipscomb and Schechter (2018) are
potentially several times larger than the direct, short-term effects, and that effects persist
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but not indefinitely absent additional intervention.
The rest of the paper is organized as follows. In Section 2, I describe the context of the

paper and the administrative data I use. In Section 3 I describe the empirical strategy, and
present results of that strategy in Section 4. Section 5 concludes.

2 Background

2.1 Policy context and timeline

In this paper, I study the interaction of three policy elements of the Dakar urban sanitation
program of the National Sanitation Office of Senegal (ONAS). The first is the launch of
a call center and matching platform for sanitation services, which ONAS provided as a
public service. The second is an experiment which subsidized desludgings for households
and induced them to call the call center and use the platform. The third is a city-wide
subsidy campaign which again induced households to call the call center. Figure 1 provides
a visual guide to the timeline of these activities.

A primary goal of the ONAS program was to increase the use of mechanized septic pit
desludging. In 2013, about 75% of households in Dakar did not have a sewer connection
and instead used toilets which drained into septic pits (Sene, 2017). These pits typically
need to be emptied 1-2 times per year. Households can either choose to use a mechanized
desludging provider, who pumps sludge from the pit into a vacuum truck and disposes of
it off-site, or they can perform a manual desludging. Manual desludgings may be done by
a family member or a baay pell (Wolof for “father shovel”) who is paid for the service. In
either case manual desludgings typically result in fecal waste being dumped in the street
in front of a house or a nearby empty lot, with important health implications for children
especially (Kresch et al., 2020; Johnson and Lipscomb, 2021).

In early 2014, ONAS scaled up a call center and platform designed to match households
to mechanized desludging service providers (Deutschmann et al., 2024a). The platform
was available as a public service for households, and operated continuously from 2014 to
2018, and again in 2019.6 The platform used just-in-time auctions to match households and
service providers (Houde et al., 2024). The mechanized desludging services offered through
the platform did not differ in any substantive way from those available elsewhere in the
market.7

Starting in 2014, researchers conducted a series of experiments in partnership with
ONAS to study household demand for sanitation services (Lipscomb and Schechter, 2018;

6Due to a change in overall government sanitation strategy, ONAS elected to close the platform in 2018
and transfer its management to a social enterprise. This transition began in April 2018 and the service
became operational again in February 2019.

7In companion work, Deutschmann et al. (2024a) find that the platform effectively offered lower prices
than the wider market in some areas of the city, whereas in others it was offering prices similar to market
prices available elsewhere. That variation in prices offered by the system covers areas much larger than the
neighborhoods of interest in this paper.
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Figure 1: Timeline of key dates

Deutschmann et al., 2024b). These experiments included offering households fixed, sub-
sidized prices to encourage adoption of mechanized desludging. About half of randomly-
selected households were offered a subsidized price of about $34 USD, which represented a
significant discount over the baseline average market price of about $50 USD.8 In order to
use the subsidies, households needed to call the call center and request a desludging. Each
household had two subsidized desludgings available to use in a twelve month period starting
from the date they were surveyed. The availability of these experimental subsidies ended
by mid-2015.

Two years after the conclusion of the experiments, in 2017, ONAS launched an exten-
sive campaign to boost mechanized desludgings. The compaign offered households a fixed,
subsidized price almost exactly equal to the “high” subsidy previously offered during the
experimental phase of the project.9 This new subsidy was available city-wide and adver-
tised extensively, including with billboards, radio spots, and promoted posts on social media
platforms (Figure A.1). As with the experiment, to access the subsidy households needed
to call the call center to request a desludging.

2.2 Data

Key for this paper is the sampling strategy used to select subsidized neighborhoods for Lip-
scomb and Schechter (2018). The field team first mapped a set of grid points across the city,
placed 200 meters apart, and assigned every other grid point for possible inclusion in the
experimental sample (I refer to these as “treated” grid points) in a checkerboard pattern.
The remaining grid points were held out for inclusion in a companion survey without any
associated exposure to experimental subsidies. Both surveys used similar criteria to exclude
grid point neighborhoods in areas connected to the sewage network, highly flood-prone ar-
eas (in which household sanitation behavior is necessarily quite different), non-residential

8As Deutschmann et al. (2024b) describe, the other half of sampled households were offered subsidized
prices of about $48 USD, representing a small discount over the average price. Take-up at this price was
much lower, although some households did call to redeem these discounts. In what follows, I refer simply
to the experimental subsidies without distinguishing the prices. On average, in a given neighborhood five
households received a “high” subsidy offer and five households received a “low” subsidy offer. In most
neighborhoods, the number of high subsidy offers was between four and six.

9The “high” subsidy of Lipscomb and Schechter (2018) offered households a price of 17,000 CFA, whereas
the 2017 subsidy campaign provided a price of 16,500 CFA.
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areas, and one small region of the city in which sampling was conducted differently for a
pilot experiment.10 For my analysis, I additionally drop grid points in areas which were
not included in both sets of surveys.11 Figure 2 illustrates the retained set of neighbor-
hoods. I rely on the locations of these grid points and the spatial extent of the sampling
strategy for the experiment to determine whether a particular area of the city was exposed
to experimental subsidies.

Figure 2: Location of sampled grid points in Dakar

Neighborhood Type

Non−Treated

Treated

I use administrative data covering the universe of household service requests made to
the platform, and especially the location of those requests. When a household called to
use the platform, the operator would input the phone number and search for a matching
profile. If the phone number the household used was already in the platform’s database,
the operator would confirm the caller’s details (namely their name and location) before

10The sampling criteria for neighborhoods was similar across the two surveys, but the sampling criteria for
households within each grid-point neighborhood was slightly different, and surveys were conducted about
one year apart. Despite the differences in household sampling and survey timing, grid point neighborhoods
appear broadly similar on observable characteristics from the two sets of baseline surveys, with no statistically
significant difference in baseline use of mechanized desludging, baseline average price for a mechanized
desludging, household size, or education of the household head. There are also no significant differences in
population density using WorldPop or Meta estimates (WorldPop and CIESIN, 2020; Facebook Connectivity
Lab, 2024)

11Results are robust to including these grid points in the analysis (see Tables A.7 and A.8).
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launching the service request. If the phone number did not appear, the operator would
first ask if an alternative phone number may been given by a member of the household
in the past. If no match was found, the operator would create a new profile and collect
information about the household, including its location. Dakar does not have a popularly-
used address system, so operators used a database of about 2000 landmarks to geo-locate
households. These landmarks included “primary” landmarks such as gas stations, schools,
and government buildings, as well as “secondary” landmarks such as a corner store. For
each household, operators would ask about a primary and secondary landmark. The names
of these landmarks were then used by the platform to communicate household locations to
sanitation service providers.

Before launching the platform, in 2012 the NGO Water and Sanitation for Africa con-
ducted a baseline census of about 65,000 households in areas of the city not connected to
the sewage network. This baseline census formed the initial client database for the platform.
About one third of the platform users I observe match directly to this baseline census based
on a phone number they provided, meaning I observe precise coordinates that were taken
at their doorstep. I also observe landmark information for these users. The remaining two
thirds of users only have coordinates associated with at least one nearby landmark. Where
possible, I use coordinates of the “secondary landmark” which should be closer to the house-
hold (this covers about 10% of users). In remaining cases, I use coordinates of the “primary
landmark” if no secondary landmark is available.12 The median distance from a household
with precise coordinates to the nearest landmark is 93 meters. There are no significant
differences in the fraction of users I observe with precise coordinates across treated and
non-treated grid point neighborhoods.

In my primary analysis I include all household requests that fall within 100 meters of
a grid point, whether or not the household location is precise or defined by the nearest
landmark. This radius exactly bisects the distance to the next grid point.13 In Appendix A
I demonstrate how my results compare if I consider different distance cutoffs. I additionally
conduct robustness checks in which I restrict my analysis only to the subset of households
with precise coordinates. Figure 3 shows the total volume of requests handled by the
platform in each six-month period, and highlights the number of requests that came from
treated or non-treated grid point neighborhoods, as well as any other requests from the
city that came from households outside these neighborhoods. The figure shows that these
neighborhoods represented a substantial fraction of total platform use throughout the period
of study. Figure A.3 plots the distribution of the outcome at the neighborhood-period level
and shows that a majority of neighborhood-periods have zero household requests.

I additionally conduct analysis in which I look separately at the volume of “post-subsidy
new” and “subsidy period repeat” platform users. I define a service request to be from a

12In cases when I observe precise coordinates as well as a primary and secondary landmark, the median
distance to secondary landmark is about half the median distance to primary landmark.

13Figure A.2 demonstrates visually how I attribute households in the data to nearby grid points.
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Figure 3: Total volume of household requests per six-month period
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This figure shows the total volume of household requests for desludgings made through the matching platform.
It includes both successful desludgings and requests where the service was not completed, either because
the client declined the offered price or the trucker was unable to complete the job. The red and yellow bars
show the number of requests made from households near treated and non-treated grid points. The blue bar
shows all other requests that came from other areas of the city.

new user if the associated client ID did not have a recorded service request during the
subsidy period. Other requests, from clients who had previously used the platform during
the subsidy period, are classified as repeat users. There is some risk that this strategy
over-identifies new users, if a different household member calls to use the platform, or if a
previous user changes their phone number. Operators were trained to ask about both of
these scenarios before creating a new client profile, but nevertheless it is possible that there
is some misclassification of repeat users as new users. Because the treated and non-treated
areas are so similar and spatially interspersed, I have no reason to believe users in different
areas would change phone numbers at different rates, nor that household separations or
mobility would occur at different rates in treated or non-treated neighborhoods.

3 Empirical Strategy

In this section, I discuss the empirical strategy and identification assumptions I use to
study the dynamics of adoption of the platform. I conduct empirical analysis at the grid
point neighborhood level using administrative data on all household requests for mechanized
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desludgings recorded in the matching platform. I assign household requests to the closest
grid point using their location information, as described above in Section 2, using a radius
of 100 meters in my primary analysis. I construct a panel at the grid point level for each six-
month period, such that time periods t align with the two subsidy campaigns and include
four intervening time periods during which use of the platform was not subsidized. Six
months also corresponds to the typical interval between desludgings for most households.
For each outcome of interest, I estimate the following equation:

Yjt = α +
8∑

k=0
βk(Tj × 1[k = t]) + λt + ηj + ϵj (1)

where Yjt is an outcome for grid point j in six-month period t. The primary outcomes
considered below are a dummy variable equal to one if any households near grid point
j called to use the platform in time period t, and a count variable with the number of
household requests. Additional outcomes include a count variable with the number of
desludgings successfully sourced through the platform (a subset of the number of requests)
and the prices of all auctions and successful desludgings. I additionally separate the total
requests variable and look at the number of requests from users who had never called during
the subsidy phase (“post-subsidy new users”) and users who used the platform during the
experiment (“subsidy-period repeat users”).

Tj is a dummy equal to one for treated grid point neighborhoods and zero for non-
treated grid point neighborhoods. In my preferred specification, I include grid point fixed
effects (ηj) to account for potential neighborhood-level, time-invariant differences in use of
mechanized desludging due to location, neighborhood accessibility, and baseline wealth.14 I
additionally include time period fixed effects λt. Standard errors ϵj are clustered at the grid
point level to account for serial autocorrelation.15 The coefficients of interest, βk, capture
the within-period difference in adoption in the neighborhoods of treated grid-points relative
to non-treated grid points after accounting for time invariant neighborhood characteristics.

Identification of the βk coefficients rests primarily on the assumption that there are
not time-varying differential changes in treated and non-treated neighborhoods that are
unrelated to the subsidy program I study. This is a plausible assumption given that the
neighborhoods I study are quite small, with a radius of 100m. The popular definition of
neighborhoods in Dakar is typically much larger, as are the smallest formal administrative
units, and these do not correspond in any consistent way to the grid point neighborhoods
I study. Additionally, I assume that a given grid point’s assignment to participate in the
experiment of Lipscomb and Schechter (2018) was as-good-as-random, conditional on the

14Results are robust to instead including baseline control variables and a higher-level arrondissement fixed
effect.

15In Table A.10 I show alternative standard errors arising from a permutation test, discussed below in
Section 4.3.
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sampling methodology described above to identify study areas.16 In essence, I assume the
fact that one set of grid points was assigned to the experimental subsidies and the other
was only used for the companion survey is exogenous to any characteristics of these two
sets of grid points.

4 Results

In this section, I present results on demand for the platform over time, as well as exploring
heterogeneity and the robustness of my results.

First, in Figures 4a and 4b, I present results showing the per-period intention-to-treat
effects of exposure to the experimental subsidies on subsequent use of the platform. Table
A.1 presents these same results in a table. In the first six months of the experiment, 45%
of non-treated neighborhoods had any residents call to use the platform (baseline mean in
Column 1 of Table A.1), and on average about 0.93 households per neighborhood used the
platform during that period (baseline mean in Column 2). The treatment increased the
probability of any calls from a neighborhood during this period by 18 percent (8 p.p.), and
increased the number of requests by 23 percent (0.21 requests). In the second six months of
the experiment, the probability and volume of calls in non-treated neighborhoods declined
to about 18 percent and 0.31 households per neighborhood. In treated neighborhoods, usage
remained persistently higher, with an 88 percent (16 p.p.) greater probability of any usage
and 96 percent (0.3) more requests.

Following the experiment, I find that platform use remained persistently high in previously-
treated neighborhoods. In the first six months, about 22 percent of non-treated neighbor-
hoods had any platform users, and there were an average of 0.42 calls per neighborhood.
This represents a slightly higher volume of calls in non-treated neighborhoods than the pre-
vious six months. Households typically desludge 1-2 times per year, and desludging needs
exhibit some seasonality aligned with rainy season flooding and key holidays. The experi-
ment treatment increased the probability of usage during this period by 82 percent (18 p.p.)
and increased the volume of usage by 139 percent (0.585 requests). By 12-18 months after
the experiment, the probability and volume of usage in treated neighborhoods remained
persistently higher despite an overall decline in usage, with a 66 percent greater probability
of usage (5 p.p compared to an 8 percent probability of any calls from non-treated areas)
and 97 percent (0.28 requests) greater volume of usage, relative to 0.17 households per non-
treated neighborhood. At 18 months post-experiment, usage of the platform has declined

16Note this assumption is distinct from the within-treated-grid-points randomization of Lipscomb and
Schechter (2018). The sampling for Lipscomb and Schechter (2018) fixed an every-other-grid-point pattern,
so the treatment assignment I consider in this paper is perfectly negatively correlated across neighboring
grid points. There are only two possible treatment assignments given that spatial structure. For this paper,
I assume that the choice of which set of grid points to include in the experiment was effectively random,
and uncorrelated with unobservable neighborhood characteristics that would make one set of areas more
likely to use the platform than the other. Below in Section 4.3 I discuss several strategies for assessing the
robustness of my inference using permutation tests given this particular spatial structure.
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in both treated and non-treated areas, with just 4 percent of neighborhoods with any usage
and no detectable treatment effect.

Next, I consider the interaction between the experiment and the city-wide subsidy cam-
paign which launched two years after the end of the experiment. Usage of the platform
increases substantially across the city, with 29 percent of non-treated neighborhoods record-
ing any usage and an average of 1.5 households per neighborhood calling. Previously-treated
neighborhoods resume using the platform at an increased rate, with 33 percent higher proba-
bility of any usage (10 p.p) and 73 percent (1.1) more households calling during the city-wide
campaign.

When the city-wide campaign ended, usage of the platform declined again in non-treated
areas, with 10 percent of neighborhoods recording any usage and an average of 0.14 house-
holds per neighborhood calling in. Usage in treated neighborhoods declined more slowly,
with 105 percent greater probability of usage at the extensive margin (11 p.p.) and 201
(0.28) percent greater volume of requests. Six months after the subsidy campaign ended, the
call center was temporarily closed due to a change in management, and when it reopened
usage was low in both treated and non-treated areas up to the limit of the administrative
data I have available.

4.1 Potential mechanisms

In this subsection, I explore some potential mechanisms for the pattern of treatment effects
shown in Figure 4.

One channel by which exposure to the platform during the experiment could lead to
increased use later is through prices. This could occur if there are increasing returns to
scale for service providers in a neighborhood, or if serving a neighborhood allows providers
to learn more about accessibility (road quality and width) and offer lower prices in the
future in some places. In Table A.4, I find no evidence of a treatment effect on price over
time in previously-subsidized areas. Price does not appear to be a primary channel driving
continued use of the platform in previously-subsidized areas relative to non-treated areas.

Another potential channel by which treated neighborhoods could continue to exhibit
higher demand is spillovers, or within-neighborhood referrals. Neighborhood referrals are an
important source of information about mechanized desludging in this context (Deutschmann
et al., 2024b). If we observe that there are consistently more new platform users in
previously-treated neighborhoods over time than in non-treated neighborhoods, this would
be consistent with information about the platform being shared. As described above in
Section 2, I define new and repeat users based on whether or not they used the platform at
all during the year of the Lipscomb and Schechter (2018) experiment (whether or note the
user themselves was eligible for the subsidy, or in a subsidized neighborhood).

Table A.5 first shows summary statistics by period for use of the platform by new
and repeat users. Consistently across periods, the raw average number of requests from

13



new users in treated areas exceeds the average requests from new users in non-treated
areas. Table A.6 corroborates this in a regression: excluding repeat users who learned
about the platform during the subsidy phase, there are still persistent increases in use
of the platform by new users after the experiment ends. These effects fade out past 12
months. Treatment effects re-emerge with the city-wide subsidy campaign and again persist
for the six months following the end of that campaign. Table A.6 also show that there are
persistently more requests from repeat users. The persistent increase in both new and repeat
users in previously-treated neighborhoods suggest households that have used the platform
find it valuable to continue using, and that they may share information with neighbors.
However, absent additional data, these results remain only suggestive that information
spillovers could be occuring.

4.2 Potential downstream impacts

Next, I discuss some of the potential downstream impacts of my findings on neighborhood
environmental quality and household health. Because this paper relies exclusively on base-
line survey data and platform administrative data, I cannot say with certainty how much
of the increase in usage in treated areas represents an increase in mechanized desludging
use overall relative to what we would expect at baseline.

To give a sense of how the usage of the platform compares to what we might expect to
be happening in these neighborhoods overall, I use population density data from WorldPop
(WorldPop and CIESIN, 2020) and baseline household sizes from neighborhood surveys to
estimate that the median neighborhood in my sample has about 53 households. From the
baseline surveys, the median household at baseline desludges about twice per year, but only
about a third of households in our data have ever used a mechanized desludging, suggesting
the median neighborhood had about 16 households performing a mechanized desludging in
a given six month period at baseline.

One way to estimate downstream impacts is to look at the number of desludgings
sourced directly through the platform.17 This gives an estimate of the direct impacts of
the subsidies on longer-run household behavior and welfare. Figure 5 and Table A.3 show
that the increased platform use in previously-treated neighborhoods did lead to an increase
in desludgings sourced through the platform, but the increase in most periods is small in
magnitude. In the six months after the experiment ended, the average treated neighborhood
saw an additional 0.11 desludgings sourced through the platform, or less than 1 percent of
baseline mechanized desludgings in the median neighborhood. At its peak, during the

17There are multiple reasons why a service request could fail to lead to a completed job. During non-
subsidized periods, households may choose not to accept the price offered, or may use the offered price
to negotiate a better price with their usual provider. Accessibility is also a salient issue: households are
sometimes inaccessible by some or all mechanized desludging trucks, if their street is too narrow or too sandy,
or if the pit opening is too far from the street. In general I do not observe the reason a given job was not
completed.
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city-wide subsidy phase, treated neighborhoods saw an additional 0.98 desludgings sourced
through the platform, or about 6 percent of baseline in the median neighborhood. The
direct impacts on neighborhood environmental quality and household health are therefore
likely to be small.

However, there are additional channels by which the platform could influence the wider
market and households’ sanitation choices. Households could achieve a better bargaining
outcome in the traditional market, if having a quote from the platform provides households
with information about current market prices or a credible outside option. Deutschmann
et al. (2024a) estimate that, over the short term, each additional auction in a neighborhood
in 2014 (induced by random variation in advertising across administrative units) reduced
prices in the traditional market and led to 4 p.p. increase in use of mechanized desludging
among nearby households. If this relationship were to hold throughout the period I study,
a back-of-the-envelope calculation suggests that, following the conclusion of the experiment,
on average about five more mechanized desludgings happened in the median treated neigh-
borhood in the subsequent three years than otherwise would have occurred, or about 5
percent of baseline in the median neighborhood. Given the number of neighborhoods, this
suggests there were about 1850 more mechanized desludgings total over the three years fol-
lowing the conclusion of the experiment. By comparison, the experiment directly subsidized
about 350 desludgings over the course of one year.

Is this change in mechanized desludging meaningful for health? Houde et al. (2024)
estimate an elasticity of diarrhea with respect to mechanized desludgings in a neighborhood
of -0.58. A 5-6% increase in mechanized desludging use in the median neighborhood could
therefore lead to a roughly 2.5-4% decrease in diarrhea incidence among children.

4.3 Robustness

In my preferred specifications, I rely on a radius of 100 meters to define grid point neighbor-
hoods, since this exactly splits the 200 meter distance used to initially define the sampling
frame of grid points. Nevertheless, one may wish to verify that the results presented are not
driven entirely by this particular neighborhood definition. In Tables A.7 and A.8 I present
results using alternative radii (75 meters, 125 meters, and 150 meters). These specifications
do produce mild changes in the magnitude of coefficients, but are qualitatively similar and
rarely result in any changes in statistical significance.

Additionally, as described above in Section 2, in my preferred specifications I include
only grid points in areas that were surveyed in both of the relevant baseline surveys. In
Columns 4-6 of Tables A.7 and A.8, I present results when I include grid points in areas
where only one set of surveys were done (i.e., either the experiment was conducted in an area
but the interspersed areas were not surveyed in the other survey, or vice versa). Using this
expanded sample, there are mild changes in the magnitude of coefficients but qualitatively
similar results.
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Figure 4: Average treatment effects of neighborhood experiment subsidy assignment by
period

(a) Impact of experimental subsidies on probability of calls from a neighborhood
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(b) Impact of experimental subsidies on volume of calls from a neighborhood
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Results shown in these figures are the per-period treatment effect estimates, shown above in equation (1)
as βk. Figure 4a matches column 1 of Table A.1 and shows estimates in which the outcome is a dummy
equal to one if any households from the area around grid point j called the platform in period t. Figure 4b
matches column 2 of Table A.1 and shows estimates in which the outcome is the number of service requests
received from the area around grid point j in period t. All regressions include grid point and time period
fixed effects, with standard errors clustered at the grid point level. Error bars show 95 percent confidence
intervals.
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Figure 5: Average treatment effects of neighborhood experiment subsidy assignment by
period on desludgings sourced through the platform
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Results shown in this figure are the per-period treatment effect estimates, shown above in equation (1) as
βk. Table A.3 shows the full regression results. The outcome is a dummy equal to 1 if a desludging was
successfully sourced through the platform. All regressions include grid point and time period fixed effects,
with standard errors clustered at the grid point level. Error bars show 95 percent confidence intervals.

Following Chen and Roth (2024), I conduct additional analysis for my second outcome
of interest, the number of requests from a neighborhood in a period, using Poisson Pseudo-
Maximum Likelihood. Results of this exercise are presented in Table A.2. In general,
the results are qualitatively consistent with the findings presented in Table A.1, with the
exception of an insignificant coefficient (p = 0.165) for the treatment effect during the first
experiment period. In most cases the implied effects are slightly larger, relative to the OLS
results. For example, this alternative specification suggests a 165 percent increase in request
volume, relative to a 96 percent increase implied by the OLS regression.

Finally, despite the plausibly as-good-as-random assignment of treatment status, the
strategy of assigning every other grid point to treatment status means that there are only
two possible treatment assignments conditional on the location of the grid points. This com-
plicates the use of standard randomization inference procedures (Young, 2019). I conduct
a permutation test in which I fix the spatial structure of treatment assignment, randomly
shift the set of grid points by up to 200 meters in any direction, and randomly assign one set
of every-other grid points to treatment. For a given counterfactual set of grid points, I re-
peat the entire procedure of assigning households to neighborhoods (as illustrated in Figure
A.2) and create the resulting counterfactual cluster-level panel. The results of this exercise
are shown in curly brackets in Table A.10. In general, the results mirror the conventional
p-values, with several exceptions where the p-values from this procedure exceed conven-
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tional levels of significance, which could suggest the analytical standard errors I estimate
clustered at the grid point level are somewhat undersized. Nevertheless, the primary quali-
tative findings hold: short-term exposure to subsidies causes increased use of the platform
when experimental subsidies end, which fades to become indistinguishable from zero over
time, and increased platform use in treated neighborhoods re-emerges when the city-wide
subsidy campaign begins.

5 Conclusion

In this paper, I explore the dynamics of household adoption of a platform for sanitation
services in Dakar, Senegal. I show that short-term subsidies had persistent impacts on house-
hold use of the platform years after the subsidies ended, improving their cost-effectiveness
and with the potential for downstream effects on neighborhood environmental quality and
household effects.

My paper has implications for the design of optimal sanitation and environmental policy
in the presence of externalities, and more broadly for our understanding of the role of short-
term subsidies in driving longer-run technology adoption. In this case, past exposure to
subsidies increased use of the matching platform both when it was and was not subsidized.
For policymakers interested in increasing adoption of matching platforms to address market
frictions, my results suggest a role for short-term subsidies. Taken together with the results
of Johnson and Lipscomb (2021), targeted short-term discounts for the poorest households
may be a particularly cost-effective strategy for inducing longer-run behavioral change,
perhaps re-occurring periodically to reinforce the longer-run change. Furthermore, my
results suggest there may be some spillovers in adoption of platforms within neighborhoods,
inducing new households to adopt the platform in addition to sparking persistent changes
in usage among direct recipients.

Future work could explore whether and how platforms like the one I study could be
further scaled by governments or social enterprises to improve the functioning of public
service markets in low-income countries. It would also be of interest for future work to
disentangle the role of different types of learning in driving the effects I observe, including
learning about the convenience of the platform itself, learning about the service providers
who use the platform, and learning about the health and environmental outcomes that
increase demand.
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A Additional Tables and Figures

Figure A.1: Advertising for the city-wide subsidy campaign

Figure A.2: Example of household attribution to nearby grid points

: location of household desludging request

Note: This figure shows a visual representation of how I attribute households to treated or non-treated
gridpoints. Each black dot in the left pane represents a household request. Service requests from households
within each 100m circle are attributed to the nearest grid point. Service requests outside these circles are
excluded from the analysis.
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Figure A.3: Distribution of household requests from a given neighborhood in a given period
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Table A.1: Call center use by period during and after experimental subsidies

(1) (2)
Any Requests Number of Requests

Treated × 0.081∗∗ 0.214∗

experimental subsidies (first 6 mo.) (0.041) (0.122)

Treated × 0.161∗∗∗ 0.301∗∗∗

experimental subsidies (last 6 mo.) (0.035) (0.073)

Treated × 0.183∗∗∗ 0.585∗∗∗

0-6 months post-subsidies (0.037) (0.099)

Treated × 0.063∗∗ 0.196∗∗∗

6-12 months post-subsidies (0.026) (0.063)

Treated × 0.055∗∗ 0.168∗∗

12-18 months post-subsidies (0.027) (0.069)

Treated × -0.016 -0.007
18-24 months post-subsidies (0.021) (0.039)

Treated × 0.097∗∗∗ 1.084∗∗∗

city-wide subsidies (0.037) (0.415)

Treated × 0.108∗∗∗ 0.277∗∗∗

30-36 months post-subsidies (0.028) (0.054)

Treated × 0.002 0.024
42-48 months post-subsidies (0.019) (0.032)

experimental -0.269∗∗∗ -0.621∗∗∗

subsidies (last 6 mo.) (0.034) (0.085)

0-6 months -0.228∗∗∗ -0.514∗∗∗

post-subsidies (0.034) (0.086)

6-12 months -0.383∗∗∗ -0.817∗∗∗

post-subsidies (0.032) (0.084)

12-18 months -0.369∗∗∗ -0.762∗∗∗

post-subsidies (0.032) (0.084)

18-24 months -0.414∗∗∗ -0.872∗∗∗

post-subsidies (0.029) (0.081)

city-wide subsidies -0.159∗∗∗ 0.559∗∗

(0.034) (0.245)

30-36 months -0.348∗∗∗ -0.797∗∗∗

post-subsidies (0.032) (0.082)

42-48 months -0.421∗∗∗ -0.890∗∗∗

post-subsidies (0.031) (0.084)

Observations 6540 6540
Number of grid points 654 654
Non-treated baseline mean 0.452 0.934
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown
at the top of each column) on the treatment dummy and time period dummies.
All regressions include grid point fixed effects. Non-treated baseline mean is
the mean of the outcome variable among non-treated grid points in the initial
experimental subsidies phase. Standard errors (in parentheses) are clustered at
the grid point level. Note that the call center was not in operation in the 36-42
month post-subsidy period.
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Table A.2: Call center use by period during and after experimental subsidies, estimated
with Poisson

(1)
Number of Requests (Poisson)

Treated × 0.527
experimental subsidies (first 6 mo.) (0.380)

Treated × 0.973∗∗

experimental subsidies (last 6 mo.) (0.379)

Treated × 1.189∗∗∗

0-6 months post-subsidies (0.375)

Treated × 1.236∗∗∗

6-12 months post-subsidies (0.458)

Treated × 0.942∗∗

12-18 months post-subsidies (0.441)

Treated × -0.470
18-24 months post-subsidies (0.702)

Treated × 0.880∗∗

city-wide subsidies (0.360)

Treated × 1.378∗∗∗

30-36 months post-subsidies (0.369)

Treated × 0.261
42-48 months post-subsidies (0.533)

experimental -1.091∗∗∗

subsidies (last 6 mo.) (0.154)

0-6 months -0.798∗∗∗

post-subsidies (0.137)

6-12 months -2.076∗∗∗

post-subsidies (0.277)

12-18 months -1.690∗∗∗

post-subsidies (0.220)

18-24 months -2.712∗∗∗

post-subsidies (0.320)

city-wide subsidies 0.469∗∗∗

(0.169)

30-36 months -1.913∗∗∗

post-subsidies (0.198)

42-48 months -3.037∗∗∗

post-subsidies (0.354)

Observations 4900
Number of grid points 490
Non-treated baseline mean 1.338
Fixed effects Grid Point
Results in this table are from a poisson pseudo-maximum likelihood regression
of the outcome variables (number of requests from a neighborhood in a period)
on the treatment dummy and time period dummies. All regressions include
grid point fixed effects. Non-treated baseline mean is the mean of the outcome
variable among non-treated grid points in the initial experimental subsidies
phase. Standard errors (in parentheses) are clustered at the grid point level.
Note that the call center was not in operation in the 36-42 month post-subsidy
period.
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Table A.3: Desludgings sourced through the platform by period during and after experi-
mental subsidies

(1)
Number of Completed Desludgings

Treated × 0.082
experimental subsidies (first 6 mo.) (0.059)

Treated × 0.143∗∗∗

experimental subsidies (last 6 mo.) (0.033)

Treated × 0.105∗∗∗

0-6 months post-subsidies (0.032)

Treated × 0.035
6-12 months post-subsidies (0.021)

Treated × 0.043∗∗

12-18 months post-subsidies (0.021)

Treated × 0.001
18-24 months post-subsidies (0.014)

Treated × 0.984∗∗

city-wide subsidies (0.386)

Treated × 0.085∗∗∗

30-36 months post-subsidies (0.031)

Treated × 0.018
42-48 months post-subsidies (0.014)

experimental -0.166∗∗∗

subsidies (last 6 mo.) (0.039)

0-6 months -0.141∗∗∗

post-subsidies (0.040)

6-12 months -0.214∗∗∗

post-subsidies (0.036)

12-18 months -0.210∗∗∗

post-subsidies (0.037)

18-24 months -0.234∗∗∗

post-subsidies (0.036)

city-wide subsidies 1.117∗∗∗

(0.230)

30-36 months -0.162∗∗∗

post-subsidies (0.039)

42-48 months -0.238∗∗∗

post-subsidies (0.036)

Observations 6540
Number of grid points 654
Non-treated baseline mean 0.245
Fixed effects Grid Point
Results in this table are from a linear regression of the outcome variable (number
of desludgings sourced through the platform in a neighborhood in a period) on
the treatment dummy and time period dummies. All regressions include grid
point fixed effects. Non-treated baseline mean is the mean of the outcome
variable among non-treated grid points in the initial experimental subsidies
phase. Standard errors (in parentheses) are clustered at the grid point level.
Note that the call center was not in operation in the 36-42 month post-subsidy
period.
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Table A.4: Call center prices by period during and after experimental subsidies

(1) (2)
Price (all requests) Price (completed desludgings)

Treated × -3.834∗

experimental subsidies (first 6 mo.) (2.050)

Treated × -2.356
experimental subsidies (last 6 mo.) (2.122)

Treated × -2.434 -1.890
0-6 months post-subsidies (1.994) (3.165)

Treated × -3.405 -3.446
6-12 months post-subsidies (2.550) (3.905)

Treated × -0.824 -2.125
12-18 months post-subsidies (2.452) (3.461)

Treated × -5.621∗∗ -13.455∗∗∗

18-24 months post-subsidies (2.383) (3.878)

Treated × -2.014 0.091
30-36 months post-subsidies (1.970) (3.252)

Treated × 1.007 3.626
42-48 months post-subsidies (2.276) (5.706)

experimental 1.013
subsidies (last 6 mo.) (0.982)

0-6 months 2.761∗∗∗ 0.000
post-subsidies (0.883) (.)

6-12 months 3.053∗ 0.722
post-subsidies (1.561) (2.035)

12-18 months 0.518 -1.677
post-subsidies (1.689) (1.813)

18-24 months 2.067 1.259
post-subsidies (1.284) (2.894)

30-36 months 0.103 -1.641
post-subsidies (0.817) (1.564)

42-48 months -2.510∗ -7.458
post-subsidies (1.377) (4.767)

Observations 1213 228
Number of grid points 355 88
Non-treated baseline mean 46.397 46.886
Results in this table are from linear regressions of the outcome variables (shown at the top of each column) on the treatment
dummy and time period dummies. Both outcomes are defined in USD (at a conversion rate of 550 XOF to 1 USD). For
column 1, note that subsidy recipients during the experiment did not directly observe the price offered. Column 2 only
includes periods when subsidies were not active. All regressions include grid point fixed effects. Non-treated baseline mean
is the mean of the outcome variable among non-treated grid points in the initial experimental subsidies phase. Standard
errors (in parentheses) are clustered at the grid point level. Note that the call center was not in operation in the 36-42
month post-subsidy period.
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Table A.5: Average household requests by period, by treatment status, and by new/repeat
status

All users Post-subsidy new users Subsidy-period repeat users
Treated Non-treated Treated Non-treated Treated Non-treated

Experiment subsidies 1.121 0.934
(first 6 mo.) (1.729) (1.411)
Experiment subsidies 0.588 0.314
(last 6 mo.) (1.089) (0.795)
0-6 months 0.978 0.421 0.808 0.341 0.170 0.079
post subsidies (1.636) (0.957) (1.472) (0.851) (0.554) (0.413)
6-12 months 0.286 0.117 0.203 0.117 0.082 0.000
post subsidies (0.977) (0.552) (0.748) (0.552) (0.549) (0.000)
12-18 months 0.313 0.172 0.201 0.131 0.113 0.041
post subsidies (1.029) (0.648) (0.776) (0.542) (0.656) (0.285)
18-24 months 0.027 0.062 0.011 0.010 0.016 0.052
post subsidies (0.256) (0.347) (0.128) (0.131) (0.222) (0.301)
city-wide 2.549 1.493 2.146 1.279 0.404 0.214
subsidies (6.505) (4.316) (5.646) (3.791) (1.447) (0.982)
30-36 months 0.387 0.138 0.371 0.124 0.016 0.014
post subsidies (0.937) (0.457) (0.904) (0.438) (0.148) (0.143)
42-48 months 0.066 0.045 0.060 0.045 0.005 0.000
post subsidies (0.342) (0.266) (0.335) (0.266) (0.074) (0.000)

Note: This table shows the mean values of the number of household requests from each neighborhood, both
overall and separately by new/repeat user status. Standard deviations are shown in parentheses.
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Table A.6: Call center use by new and repeat callers

(1) (2)
Post-Subsidy New Users Subsidy Period Repeat Users

Treated × 0.4852∗∗∗ 0.0993∗∗

0-6 months post-subsidies (0.0891) (0.0389)

Treated × 0.1049∗ 0.0907∗∗∗

6-12 months post-subsidies (0.0538) (0.0303)

Treated × 0.0884 0.0796∗∗

12-18 months post-subsidies (0.0559) (0.0393)

Treated × 0.0195 -0.0269
18-24 months post-subsidies (0.0302) (0.0227)

Treated × 0.8852∗∗ 0.1984∗∗

city-wide subsidies (0.3618) (0.0942)

Treated × 0.2656∗∗∗ 0.0110
30-36 months post-subsidies (0.0520) (0.0148)

Treated × 0.0125 0.0110
42-48 months post-subsidies (0.0304) (0.0089)

6-12 months -0.2241∗∗∗ -0.0793∗∗∗

post-subsidies (0.0540) (0.0242)

12-18 months -0.2103∗∗∗ -0.0379
post-subsidies (0.0484) (0.0269)

18-24 months -0.3310∗∗∗ -0.0276
post-subsidies (0.0501) (0.0297)

city-wide subsidies 0.9379∗∗∗ 0.1345∗∗

(0.2048) (0.0622)

30-36 months -0.2172∗∗∗ -0.0655∗∗∗

post-subsidies (0.0473) (0.0239)

42-48 months -0.2966∗∗∗ -0.0793∗∗∗

post-subsidies (0.0497) (0.0242)

Observations 5232 5232
Number of grid points 654 654
Non-treated baseline mean 0.341 0.079
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown at the top of
each column) on the treatment dummy and time period dummies. Post-Subsidy New Users
is the number of requests from a given neighorhood from users that did not call to use the
platform during the experimental subsidy period. Subsidy Period Repeat Users is the number
of requests from a neighborhood by households which had previously used the platform during
the experimental subsidy period. All regressions include grid point fixed effects. Non-treated
baseline mean is the mean of the outcome variable among non-treated grid points in the initial
experimental subsidies phase. Standard errors (in parentheses) are clustered at the grid point
level. Note that the call center was not in operation in the 36-42 month post-subsidy period.
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Table A.7: Robustness table: Call center use (extensive margin) by period during and after
experimental subsidies, with different sample definitions and neighborhood radius thresholds

Dense grid points All grid points
(1) (2) (3) (4) (5) (6)
75m 125m 150m 75m 125m 150m

Treated × 0.074∗∗ 0.110∗∗∗ 0.113∗∗∗ 0.096∗∗∗ 0.126∗∗∗ 0.136∗∗∗

experimental subsidies (first 6 mo.) (0.037) (0.041) (0.041) (0.034) (0.038) (0.038)

Treated × 0.118∗∗∗ 0.213∗∗∗ 0.234∗∗∗ 0.121∗∗∗ 0.207∗∗∗ 0.221∗∗∗

experimental subsidies (last 6 mo.) (0.030) (0.037) (0.038) (0.027) (0.033) (0.034)

Treated × 0.165∗∗∗ 0.194∗∗∗ 0.199∗∗∗ 0.160∗∗∗ 0.176∗∗∗ 0.187∗∗∗

0-6 months post-subsidies (0.033) (0.040) (0.040) (0.029) (0.036) (0.036)

Treated × 0.069∗∗∗ 0.062∗∗ 0.062∗∗ 0.059∗∗∗ 0.050∗ 0.051∗

6-12 months post-subsidies (0.022) (0.029) (0.030) (0.020) (0.026) (0.027)

Treated × 0.059∗∗ 0.055∗ 0.056∗ 0.050∗∗ 0.051∗ 0.055∗

12-18 months post-subsidies (0.023) (0.031) (0.032) (0.021) (0.028) (0.029)

Treated × -0.010 -0.005 -0.012 -0.009 -0.007 -0.011
18-24 months post-subsidies (0.018) (0.025) (0.025) (0.016) (0.022) (0.023)

Treated × 0.094∗∗∗ 0.137∗∗∗ 0.125∗∗∗ 0.099∗∗∗ 0.121∗∗∗ 0.113∗∗∗

city-wide subsidies (0.034) (0.038) (0.038) (0.031) (0.035) (0.035)

Treated × 0.092∗∗∗ 0.128∗∗∗ 0.131∗∗∗ 0.083∗∗∗ 0.106∗∗∗ 0.106∗∗∗

30-36 months post-subsidies (0.023) (0.031) (0.033) (0.021) (0.028) (0.029)

Treated × 0.006 0.017 0.009 -0.006 -0.001 -0.010
42-48 months post-subsidies (0.015) (0.022) (0.023) (0.014) (0.020) (0.020)

experimental -0.190∗∗∗ -0.317∗∗∗ -0.338∗∗∗ -0.164∗∗∗ -0.286∗∗∗ -0.295∗∗∗

subsidies (last 6 mo.) (0.031) (0.035) (0.035) (0.027) (0.031) (0.031)

0-6 months -0.166∗∗∗ -0.248∗∗∗ -0.262∗∗∗ -0.142∗∗∗ -0.218∗∗∗ -0.229∗∗∗

post-subsidies (0.031) (0.036) (0.035) (0.026) (0.031) (0.031)

6-12 months -0.276∗∗∗ -0.424∗∗∗ -0.441∗∗∗ -0.238∗∗∗ -0.382∗∗∗ -0.394∗∗∗

post-subsidies (0.029) (0.033) (0.033) (0.025) (0.029) (0.030)

12-18 months -0.266∗∗∗ -0.407∗∗∗ -0.424∗∗∗ -0.229∗∗∗ -0.368∗∗∗ -0.382∗∗∗

post-subsidies (0.029) (0.034) (0.034) (0.025) (0.030) (0.030)

18-24 months -0.276∗∗∗ -0.472∗∗∗ -0.497∗∗∗ -0.241∗∗∗ -0.431∗∗∗ -0.450∗∗∗

post-subsidies (0.027) (0.030) (0.030) (0.023) (0.027) (0.027)

city-wide subsidies -0.100∗∗∗ -0.200∗∗∗ -0.207∗∗∗ -0.071∗∗∗ -0.153∗∗∗ -0.156∗∗∗

(0.032) (0.033) (0.034) (0.027) (0.030) (0.031)

30-36 months -0.252∗∗∗ -0.386∗∗∗ -0.400∗∗∗ -0.221∗∗∗ -0.343∗∗∗ -0.348∗∗∗

post-subsidies (0.028) (0.033) (0.034) (0.024) (0.030) (0.031)

42-48 months -0.286∗∗∗ -0.490∗∗∗ -0.517∗∗∗ -0.246∗∗∗ -0.439∗∗∗ -0.459∗∗∗

post-subsidies (0.028) (0.031) (0.031) (0.024) (0.028) (0.028)

Observations 6540 6540 6540 7630 7630 7630
Number of grid points 654 654 654 763 763 763
Non-treated baseline mean 0.303 0.524 0.552 0.263 0.473 0.496
Results in this table are from linear regressions of a dummy variable indicating any household calls from that
neighborhood on the treatment dummy and time period dummies.Columns 1, 2, and 3 use the main sample of
654 grid points as described in Section 2, whereas columns 4, 5, and 6 use all 763 grid points surveyed, including
in areas where only treated or non-treated areas were ultimately surveyed. Columns 1 and 4 use a 75m radius
(narrower than 100m as used in my primary analysis), columns 2 and 5 use 125m, and columns 3 and 6 use 150m
to define neighborhoods. All regressions include grid point fixed effects. Non-treated baseline mean is the mean of
the outcome variable among non-treated grid points in the initial experimental subsidies phase. Standard errors
(in parentheses) are clustered at the grid point level. Note that the call center was not in operation in the 36-42
month post-subsidy period.
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Table A.8: Robustness table: Call center volume of use by period during and after experi-
mental subsidies, with different sample definitions and neighborhood radius thresholds

Dense grid points All grid points
(1) (2) (3) (4) (5) (6)
75m 125m 150m 75m 125m 150m

Treated × 0.243∗∗∗ 0.327∗∗ 0.494∗∗∗ 0.274∗∗∗ 0.421∗∗∗ 0.629∗∗∗

experimental subsidies (first 6 mo.) (0.090) (0.140) (0.160) (0.081) (0.130) (0.149)

Treated × 0.243∗∗∗ 0.417∗∗∗ 0.489∗∗∗ 0.234∗∗∗ 0.398∗∗∗ 0.478∗∗∗

experimental subsidies (last 6 mo.) (0.058) (0.084) (0.087) (0.052) (0.076) (0.081)

Treated × 0.508∗∗∗ 0.718∗∗∗ 0.790∗∗∗ 0.478∗∗∗ 0.651∗∗∗ 0.732∗∗∗

0-6 months post-subsidies (0.081) (0.118) (0.124) (0.075) (0.109) (0.118)

Treated × 0.177∗∗∗ 0.241∗∗∗ 0.252∗∗∗ 0.149∗∗∗ 0.203∗∗∗ 0.221∗∗∗

6-12 months post-subsidies (0.051) (0.078) (0.085) (0.045) (0.068) (0.076)

Treated × 0.137∗∗∗ 0.239∗∗ 0.263∗∗∗ 0.136∗∗∗ 0.256∗∗∗ 0.275∗∗∗

12-18 months post-subsidies (0.052) (0.095) (0.098) (0.051) (0.087) (0.093)

Treated × -0.008 0.042 0.038 -0.009 0.036 0.043
18-24 months post-subsidies (0.033) (0.051) (0.051) (0.029) (0.044) (0.048)

Treated × 1.008∗∗∗ 1.452∗∗ 1.412∗∗ 0.918∗∗∗ 1.381∗∗∗ 0.936
city-wide subsidies (0.313) (0.587) (0.674) (0.280) (0.532) (0.748)

Treated × 0.206∗∗∗ 0.302∗∗∗ 0.320∗∗∗ 0.191∗∗∗ 0.279∗∗∗ 0.325∗∗∗

30-36 months post-subsidies (0.045) (0.068) (0.072) (0.041) (0.063) (0.071)

Treated × 0.019 0.081∗ 0.070 -0.000 0.044 0.041
42-48 months post-subsidies (0.025) (0.045) (0.046) (0.023) (0.039) (0.043)

experimental -0.334∗∗∗ -0.852∗∗∗ -0.934∗∗∗ -0.295∗∗∗ -0.748∗∗∗ -0.807∗∗∗

subsidies (last 6 mo.) (0.061) (0.099) (0.103) (0.053) (0.086) (0.089)

0-6 months -0.286∗∗∗ -0.697∗∗∗ -0.738∗∗∗ -0.238∗∗∗ -0.581∗∗∗ -0.603∗∗∗

post-subsidies (0.062) (0.103) (0.107) (0.056) (0.092) (0.099)

6-12 months -0.455∗∗∗ -1.066∗∗∗ -1.131∗∗∗ -0.399∗∗∗ -0.943∗∗∗ -0.994∗∗∗

post-subsidies (0.060) (0.105) (0.111) (0.052) (0.091) (0.096)

12-18 months -0.434∗∗∗ -0.990∗∗∗ -1.062∗∗∗ -0.377∗∗∗ -0.881∗∗∗ -0.929∗∗∗

post-subsidies (0.061) (0.112) (0.116) (0.053) (0.096) (0.102)

18-24 months -0.455∗∗∗ -1.166∗∗∗ -1.255∗∗∗ -0.402∗∗∗ -1.040∗∗∗ -1.119∗∗∗

post-subsidies (0.055) (0.102) (0.106) (0.048) (0.089) (0.092)

city-wide subsidies 0.224∗ 0.721∗∗ 1.107∗∗∗ 0.246∗∗ 0.799∗∗∗ 1.584∗∗∗

(0.124) (0.289) (0.374) (0.110) (0.258) (0.544)

30-36 months -0.438∗∗∗ -1.000∗∗∗ -1.059∗∗∗ -0.388∗∗∗ -0.875∗∗∗ -0.918∗∗∗

post-subsidies (0.057) (0.093) (0.100) (0.049) (0.081) (0.088)

42-48 months -0.476∗∗∗ -1.197∗∗∗ -1.290∗∗∗ -0.416∗∗∗ -1.057∗∗∗ -1.136∗∗∗

post-subsidies (0.058) (0.105) (0.109) (0.050) (0.091) (0.094)

Observations 6540 6540 6540 7630 7630 7630
Number of grid points 654 654 654 763 763 763
Non-treated baseline mean 0.503 1.245 1.338 0.442 1.105 1.187
Results in this table are from linear regressions of the number of household calls from a neighborhood on the
treatment dummy and time period dummies. Columns 1, 2, and 3 use the main sample of 654 grid points as
described in Section 2, whereas columns 4, 5, and 6 use all 763 grid points surveyed, including in areas where only
treated or non-treated areas were ultimately surveyed. Columns 1 and 4 use a 75m radius (narrower than 100m as
used in my primary analysis), columns 2 and 5 use 125m, and columns 3 and 6 use 150m to define neighborhoods.
All regressions include grid point fixed effects. Non-treated baseline mean is the mean of the outcome variable
among non-treated grid points in the initial experimental subsidies phase. Standard errors (in parentheses) are
clustered at the grid point level. Note that the call center was not in operation in the 36-42 month post-subsidy
period.
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Table A.9: Call center use by period during and after experimental subsidies, sample re-
stricted to precise coordinates

(1) (2)
Any Requests Number of Requests

Treated × 0.060 0.125
experimental subsidies (first 6 mo.) (0.039) (0.112)

Treated × 0.125∗∗∗ 0.178∗∗∗

experimental subsidies (last 6 mo.) (0.032) (0.058)

Treated × 0.126∗∗∗ 0.345∗∗∗

0-6 months post-subsidies (0.034) (0.071)

Treated × 0.068∗∗∗ 0.197∗∗∗

6-12 months post-subsidies (0.021) (0.053)

Treated × 0.025 0.106∗∗

12-18 months post-subsidies (0.020) (0.047)

Treated × -0.003 0.010
18-24 months post-subsidies (0.015) (0.025)

Treated × 0.052 0.196∗

city-wide subsidies (0.032) (0.112)

Treated × 0.021 0.050∗∗

30-36 months post-subsidies (0.018) (0.024)

Treated × 0.003 0.026
42-48 months post-subsidies (0.014) (0.023)

experimental -0.276∗∗∗ -0.586∗∗∗

subsidies (last 6 mo.) (0.033) (0.080)

0-6 months -0.231∗∗∗ -0.528∗∗∗

post-subsidies (0.034) (0.079)

6-12 months -0.390∗∗∗ -0.772∗∗∗

post-subsidies (0.030) (0.078)

12-18 months -0.369∗∗∗ -0.734∗∗∗

post-subsidies (0.030) (0.078)

18-24 months -0.393∗∗∗ -0.776∗∗∗

post-subsidies (0.029) (0.077)

city-wide subsidies -0.217∗∗∗ -0.324∗∗∗

(0.032) (0.101)

30-36 months -0.372∗∗∗ -0.766∗∗∗

post-subsidies (0.030) (0.076)

42-48 months -0.393∗∗∗ -0.783∗∗∗

post-subsidies (0.030) (0.077)

Observations 6540 6540
Number of grid points 654 654
Non-treated baseline mean 0.407 0.800
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown
at the top of each column) on the treatment dummy and time period dummies.
The sample is restricted to platform users with precise GPS coordinates and
excludes households geo-localized only with the nearest landmark. All regres-
sions include grid point fixed effects. Non-treated baseline mean is the mean
of the outcome variable among non-treated grid points in the initial experimen-
tal subsidies phase. Standard errors (in parentheses) are clustered at the grid
point level. Note that the call center was not in operation in the 36-42 month
post-subsidy period.
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Table A.10: Call center use by period during and after experimental subsidies, with permu-
tation test p-values

(1) (2)
Any Requests Number of Requests

Treated × 0.081 0.214
experimental subsidies (first 6 mo.) (0.041) (0.122)

[0.046] [0.081]
{0.048} {0.068}

Treated × 0.161 0.301
experimental subsidies (last 6 mo.) (0.035) (0.073)

[<0.001] [<0.001]
{0.031} {0.111}

Treated × 0.183 0.585
0-6 months post-subsidies (0.037) (0.099)

[<0.001] [<0.001]
{0.021} {0.012}

Treated × 0.063 0.196
6-12 months post-subsidies (0.026) (0.063)

[0.015] [0.002]
{0.167} {0.057}

Treated × 0.055 0.168
12-18 months post-subsidies (0.027) (0.069)

[0.046] [0.016]
{0.188} {0.129}

Treated × -0.016 -0.007
18-24 months post-subsidies (0.021) (0.039)

[0.460] [0.849]
{0.484} {0.808}

Treated × 0.097 1.084
city-wide subsidies (0.037) (0.415)

[0.009] [0.009]
{0.095} {0.001}

Treated × 0.108 0.277
30-36 months post-subsidies (0.028) (0.054)

[<0.001] [<0.001]
{0.002} {<0.001}

Treated × 0.002 0.024
42-48 months post-subsidies (0.019) (0.032)

[0.911] [0.467]
{0.903} {0.486}

Observations 6540 6540
Number of grid points 654 654
Non-treated baseline mean 0.138 0.228
Fixed effects Grid Point Grid Point
Results in this table are from linear regressions of the outcome variables (shown
at the top of each column) on the treatment dummy and time period dummies.
All regressions include grid point fixed effects. Non-treated baseline mean is
the mean of the outcome variable among non-treated grid points in the initial
experimental subsidies phase. Standard errors (in parentheses) are clustered at
the grid point level. Analytical p-values are shown in square brackets. P-values
from permutation test (with 1000 iterations) are shown in curly brackets. See
Section 4.3 for more on this procedure. Note that the call center was not in
operation in the 36-42 month post-subsidy period.
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